Giải bài 25 trang 29 SGK Hình học 12 Nâng cao
Chứng minh rằng nếu có phép vị tự tỉ số k biến tứ diện ABCD thành tứ diện A’B’C’D’ thì
Bài 25. Chứng minh rằng nếu có phép vị tự tỉ số \(k\) biến tứ diện \(ABCD\) thành tứ diện \(A’B’C’D’\)a thì \({{{V_{A'B'C'D'}}} \over {{V_{ABCD}}}} = {\left| k \right|^3}\)
Giải
Giả sử phép vị tự \(f\) tỉ số \(k\) biến hình chóp \(A.BCD\) thành hình chóp \(A’.B’C’D’\). Khi đó, \(f\) biến đường cao \(AH\) của hình chóp \(A.BCD\) thành đường cao \(A‘H’\) của hình chóp \(A’.B’C’D’\) do đó \(A'H' = \left| k \right|AH\). Tam giác \(BCD\) được biến thành tam giác \(B’C’D’\) qua \(f\) nên \({S_{B'C'D'}} = {k^2}{S_{BCD}}\)
Từ đó suy ra \({{{V_{A'B'C'D'}}} \over {{V_{ABCD}}}} = {{{1 \over 3}{S_{B'C'D'}}.A'H'} \over {{1 \over 3}{S_{BCD}}.AH}} = {\left| k \right|^3}\)
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học