Giải bài 2 trang 63 SGK Hình học 12 Nâng cao
Xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp S.ABC
- Bài học cùng chủ đề:
- Bài 3 trang 63 SGK Hình học 12 Nâng cao
- Bài 4 trang 63 SGK Hình học 12 Nâng cao
- Bài 5 trang 63 Hình học 12 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 2. Xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp \(S.ABC\), biết \(SA = SB = SC = a\), \(\widehat {ASB} = {60^0},\widehat {BSC} = {90^0},\widehat {CSA} = {120^0}\).
Giải
Áp dụng định lí Cosin trong tam giác \(SAB, SAC\) ta có:
\(\eqalign{
& A{B^2} = S{A^2} + S{B^2} - 2SA.SB.\cos {60^0} \cr
& = {a^2} + {a^2} - 2{a^2}.{1 \over 2} = {a^2} \Rightarrow AB = a \cr
& A{C^2} = S{A^2} + S{C^2} - 2SA.SC.\cos {120^0} \cr
& = {a^2} + {a^2} - 2{a^2}\left( { - {1 \over 2}} \right) = 3{a^2} \Rightarrow AC = a\sqrt 3 \cr} \)
Trong tam giác vuông \(SBC\) có: \(B{C^2} = S{B^2} + S{C^2} = 2{a^2} \Rightarrow BC = a\sqrt 2 \)
Ta có: \(A{C^2} = A{B^2} + B{C^2} \Rightarrow \Delta ABC\) vuông tại \(B\).
Gọi \(H\) là trung điểm của \(AC\) thì \(H\) là tâm đường tròn ngoại tiếp tam giác ABC.
Vì \(SA = SB = SC\) nên \(SH \bot mp\left( {ABC} \right)\)
Và \(S{H^2} = S{C^2} - H{C^2} = {a^2} - {\left( {{{a\sqrt 3 } \over 2}} \right)^2} = {{{a^2}} \over 4} \Rightarrow SH = {a \over 2}\)
Gọi \(O\) là điểm đối xứng của \(S\) qua \(H\) thì \(SO = OA = OB = OC = a\) nên mặt cầu ngoại tiếp hình chóp \(S.ABC\) có tâm \(O\) và bán kính \(R = a\).
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học