Giải bài 1 trang 63 SGK Hình học 12 Nâng cao
Cho mp(P) và điểm A không thuộc (P). Chứng minh rằng mọi mặt cầu đi qua A và có tâm nằm trên (P) luôn luôn đi qua hai điểm cố định.
- Bài học cùng chủ đề:
- Bài 2 trang 63 SGK Hình học 12 Nâng cao
- Bài 3 trang 63 SGK Hình học 12 Nâng cao
- Bài 4 trang 63 SGK Hình học 12 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 1. Cho mp \((P)\) và điểm \(A\) không thuộc \((P)\). Chứng minh rằng mọi mặt cầu đi qua \(A\) và có tâm nằm trên \((P)\) luôn luôn đi qua hai điểm cố định.
Giải
Lấy điểm \(O\) nằm trên mp \((P)\). Gọi \((S)\) là mặt cầu đi qua \(A\) có tâm \(O\).
Gọi \(A’\) là điểm đối xứng của \(A\) qua mp \((P)\) ta có \(OA’ = OA = R\) nên \((S)\) đi qua \(A’\). Vậy mặt cầu \((S)\) luôn đi qua hai điểm cố định \(A\) và \(A’\).
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học