Bài 21 trang 60 SGK Hình học 12 Nâng cao
Cho tam giác ABC vuông tại A, AB = c, AB = b. Tính thể tích của khối tròn xoay sinh bởi tam giác đó (kể cả các điểm trong) khi quay quanh đường thẳng BC.
Bài 21. Cho tam giác \(ABC\) vuông tại \(A, AB = c, AB = b\). Tính thể tích của khối tròn xoay sinh bởi tam giác đó (kể cả các điểm trong) khi quay quanh đường thẳng \(BC\).
Giải
Gọi \(AH\) là đường cao của tam giác \(ABC\).
Ta có: \({1 \over {A{H^2}}} = {1 \over {A{B^2}}} + {1 \over {A{C^2}}} = {1 \over {{b^2}}} + {1 \over {{c^2}}} \Rightarrow A{H^2} = {{{b^2}{c^2}} \over {{b^2} + {c^2}}}\)
Hai tam giác \(ABH\) và \(ACH\) khi quay quanh \(BC\) lần lượt tạo thành hai khối nón \({H_1},{H_2}\) có thể tích lần lượt là
\({V_1} = {1 \over 3}\pi A{H^2}BH\,\,,\,\,{V_2} = {1 \over 3}\pi A{H^2}CH\)
Thể tích của khối tròn xoay sinh bởi tam giác \(ABC\) khi quay quanh \(BC\) là:
\(\eqalign{
& V = {V_1} + {V_2} = {1 \over 3}\pi A{H^2}BH + {1 \over 3}\pi A{H^2}CH = {1 \over 3}\pi A{H^2}BC \cr
& \,\,\,\,\, = {1 \over 3}\pi {{{b^2}{c^2}} \over {{b^2} + {c^2}}}\sqrt {{b^2} + {c^2}} = {{\pi {b^2}{c^2}} \over {3\sqrt {{b^2} + {c^2}} }} \cr} \)
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học