Giải bài 6 trang 59 sgk hình học 10

6. Tam giác ABC có các cạnh a = 8cm, b = 10cm, c = 13cm.

Bài 6. Tam giác \(ABC\) có các cạnh \(a = 8cm, b = 10cm, c = 13cm\)

a) Tam giác đó có góc tù không? 

b) Tính độ dài đường trung tuyến \(MA\) của tam giác \(ABC\) đó.

Giải

a) Xét tổng \({a^2} + {b^2} - {c^2} = {8^2} + {10^2} - {13^2} =  - 5 < 0\)

Vậy tam giác \(ABC\) có góc \(C\) tù

\(\cos C = \frac{a^{2}+b^{2}- c^{2}}{2ab}\) = \(\frac{-5}{160} ≈ -0, 3125\)  

Suy ra \(\widehat{C} =  91^047’\)

b) Áp dụng công thức tính đường trung tuyến, ta tính được: 

\(A{M^2} = {{{b^2} + {c^2}} \over 2} - {{{a^2}} \over 4} = {{{{10}^2} + {{13}^2}} \over 2} - {{{8^2}} \over 4} = 118,5\)

Suy ra \(AM ≈ 10,89cm\)

Các bài học liên quan
Câu 1 trang 62 SGK Hình học 10
Câu 4 trang 62 SGK Hình học 10
Các chương học và chủ đề lớn

Bài học nổi bật nhất

Đề thi lớp 10 mới cập nhật