Giải bài 32 trang 103 SGK Hình học 10 Nâng cao

Viết phương trình chính tắc của đường elip (E) trong mỗi trường hợp sau

Viết phương trình chính tắc của đường elip (E) trong mỗi trường hợp sau

a) (E) có độ dài trục lớn bằng 8 và tâm sai \(e = {{\sqrt 3 } \over 2};\)

b) (E) có độ dài trục bé bằng 8 và tiêu cự bằng 4;

c) (E) có một tiêu điểm là \(F(\sqrt 3 ;0)\) và đi qua điểm \(M\left( {1;{{\sqrt 3 } \over 2}} \right).\)

Giải

a) Ta có:

\(\eqalign{
& 2a = 8 \Leftrightarrow a = 4 \cr
& e = {c \over a} = {{\sqrt 3 } \over 2} \Rightarrow c = 2\sqrt 3 \cr
& {b^2} = {a^2} - {c^2} = 16 - 12 = 4 \cr} \)

Vậy \((E):{{{x^2}} \over {16}} + {{{y^2}} \over 4} = 1.\)

b) Ta có: 

\(\eqalign{
& 2b = 8 \Leftrightarrow b = 4 \cr
& 2c = 4 \Leftrightarrow c = 2 \cr
& {a^2} = {b^2} + {c^2} = 16 + 4 = 20 \cr} \) 

Vậy \((E):{{{x^2}} \over {20}} + {{{y^2}} \over {16}} = 1.\)

c) Ta có: \(c = \sqrt 3  \Rightarrow {a^2} - {b^2} = 3\)

Giả sử: \((E):{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\)

\(M\left( {1;{{\sqrt 3 } \over 2}} \right) \in (E)\) nên \({1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1\)

Ta có hệ phương trình:

\(\eqalign{
& \left\{ \matrix{
{a^2} - {b^2} = 3 \hfill \cr
{1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{a^2} = {b^2} + 3 \hfill \cr
{1 \over {{b^2} + 3}} + {3 \over {4{b^2}}} = 1 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
{a^2} = {b^2} + 3 \hfill \cr
4{b^2} + 3{b^2} + 9 = 4{b^4} + 12{b^2} \hfill \cr} \right. \cr&\Leftrightarrow \left\{ \matrix{
{a^2} = {b^2} + 3 \hfill \cr
4{b^4} + 5{b^2} - 9 = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
{b^2} = - {9 \over 4}\,(loai) \hfill \cr
{b^2} = 1 \Rightarrow {a^2} = 4 \hfill \cr} \right. \cr} \) 

Vậy  \((E):{{{x^2}} \over 4} + {{{y^2}} \over 1} = 1\)

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 10 mới cập nhật