Giải bài 3 trang 70 SGK Hình học 10 nâng cao
Cho hình bình hành ABCD. Tìm tập hợp các điểm M sao cho
- Bài học cùng chủ đề:
- Bài 4 trang 70 SGK Hình học 10 nâng cao
- Bài 5 trang 70 SGK Hình học 10 nâng cao
- Bài 6 trang 70 SGK Hình học 10 nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 3. Cho hình bình hành \(ABCD\). Tìm tập hợp các điểm \(M\) sao cho
\(M{A^2} + M{B^2} + M{C^2} + M{D^2} = {k^2}\), trong đó \(k\) là một số cho trước.
Hướng dẫn trả lời
Gọi \(O\) là tâm hình bình hành \(ABCD\), ta có
\(\eqalign{
& M{A^2} + M{B^2} + M{C^2} + M{D^2} = {\overrightarrow {MA} ^2} + {\overrightarrow {MB} ^2} + {\overrightarrow {MC} ^2} + {\overrightarrow {MD} ^2} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {(\overrightarrow {OA} - \overrightarrow {OM} )^2} + {(\overrightarrow {OB} - \overrightarrow {OM} )^2} + {(\overrightarrow {OC} - \overrightarrow {OM} )^2} + {(\overrightarrow {OD} - \overrightarrow {OM} )^2} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = O{A^2} + O{B^2} + O{C^2} + O{D^2} + 4O{M^2} - 2\overrightarrow {OM} (\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} ) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2(O{A^2} + O{B^2}) + 4O{M^2} \cr} \)
Do đó \(M{A^2} + M{B^2} + M{C^2} + M{D^2} = {k^2}\,\, \Leftrightarrow \,\,\,4O{M^2} = {k^2} - 2(O{A^2} + O{B^2})\).
+) Nếu \({k^2} > 2(O{A^2} + O{B^2})\) thì tập hợp các điểm \(M\) là đường tròn tâm \(O\) bán kính \(\sqrt {{1 \over 4}\left[ {{k^2} - 2(O{A^2} + O{B^2})} \right]} \).
+) Nếu \({k^2} = 2(O{A^2} + O{B^2})\) thì tập hợp các điểm \(M\) chỉ gồm một phần tử là \(O\).
+) Nếu \({k^2} < 2(O{A^2} + O{B^2})\) thì tập hợp điểm \(M\) là tập rỗng.
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học