Giải bài 63 trang 57 SGK giải tích 12 nâng cao
a) Khảo sát sự biến thiên và vẽ đồ thị (H) của hàm số: b) Chứng minh rằng đường thẳng luôn đi qua một điểm cố định của đường cong (H) khi m biến thiên. c) Tìm các giá trị của m sao cho đường thẳng đã cho cắt đường cong (H) tại hai điểm thuộc cùng một nhánh của (H).
- Bài học cùng chủ đề:
- Bài 64 trang 57 SGK giải tích 12 nâng cao
- Bài 65 trang 58 sách giải tích 12 nâng cao
- Bài 66 trang 58 SGK giải tích 12 nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 63
a) Khảo sát sự biến thiên và vẽ đồ thị \((H)\) của hàm số: \(y = {{x + 2} \over {2x + 1}}\)
b) Chứng minh rằng đường thẳng \(y = mx + m - 1\) luôn đi qua một điểm cố định của đường cong (H) khi m biến thiên.
c) Tìm các giá trị của m sao cho đường thẳng đã cho cắt đường cong \((H)\) tại hai điểm thuộc cùng một nhánh của (H).
Giải
a) Tập xác định: \(D =\mathbb R\backslash \left\{ { - {1 \over 2}} \right\}\)
+) Sự biến thiên:
\(y' = {{ - 3} \over {{{(2x + 1)}^2}}} < 0\,\forall x \in D\)
Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - {1 \over 2}} \right)\) và \(\left( { - {1 \over 2}; + \infty } \right)\)
Giới hạn:
\(\mathop {\lim y}\limits_{x \to - {{{1 \over 2}}^ - }} = - \infty ;\,\mathop {\lim y}\limits_{x \to - {{{1 \over 2}}^ + }} = + \infty \)
Hầm số không có cực trị.
Tiệm cận đứng: \(x={ - {1 \over 2}}\)
\(\mathop {\lim y}\limits_{x \to \pm \infty } = {1 \over 2}\)
Tiệm cận ngang \(y={1 \over 2}\)
Bảng biến thiên:
Đồ thị giao \(Ox\) tại điểm \((-2;0)\)
Đồ thị giao \(Oy\) tại điểm \((0;2)\)
b) Ta có \(y = mx + m - 1 \Leftrightarrow y + 1 = m\left( {x + 1} \right)\)
Tọa độ điểm cố định \(A\) của đường thẳng là nghiệm của hệ:
\(\left\{ \matrix{
x + 1 = 0 \hfill \cr
y + 1 = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - 1 \hfill \cr
y = - 1 \hfill \cr} \right.\)
Vậy \(A(-1;1)\)
Tọa độ \(A\) thỏa mãn phương trình \(y = {{x + 2} \over {2x + 1}}\) nên \(A\) thuộc đường cong \((H)\).
c) Hoành độ giao điểm của đường thẳng đã cho và đường cong \((H)\) là nghiệm của phương trình:
\(\eqalign{
& \,\,\,m\left( {x + 1} \right) - 1 = {{x + 2} \over {2x + 1}} \Leftrightarrow \left( {2x + 1} \right)\left[ {m\left( {x + 1} \right) - 1} \right] = x + 2 \cr
& \Leftrightarrow m\left( {x + 1} \right)\left( {2x + 1} \right) - \left( {2x + 1} \right) = x + 2 \cr
& \Leftrightarrow \left( {x + 1} \right)\left( {2mx + m - 3} \right) = 0 \Leftrightarrow \left[ \matrix{
x = - 1 \hfill \cr
f\left( x \right) = 2mx + m - 3 = 0\,\,\,\left( 1 \right) \hfill \cr} \right. \cr} \)
Hai nhánh của \((H)\) nằm về hai bên của tiệm cận đứng \(x = - {1 \over 2}\)
Điểm \(A(-1;1)\) thuộc nhánh trái của \((H)\) vì \({x_A} = - 1 < - {1 \over 2}\)
Đường thẳng cắt \((H)\) tại hai điểm thuộc cùng một nhánh khi và chỉ khi (1) có nghiệm \(x < - {1 \over 2}\) và \(x \ne - 1\) tức
\(\left\{ \matrix{
x \ne 0 \hfill \cr
x = {{ - m + 3} \over 2} < - {1 \over 2} \hfill \cr
f\left( { - 1} \right) \ne 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
m \ne 0 \hfill \cr
{3 \over {2m}} < 0 \hfill \cr
- m - 3 \ne 0 \hfill \cr} \right. \Leftrightarrow m < - 3\,\, \text{hoặc}\, - 3 < m < 0.\)
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học