Giải bài 3 trang 189 SGK Đại số và Giải tích 12 Nâng cao

Xác định các số phức biểu diễn bởi các đỉnh của một lục giác đều có tâm là gốc tọa độ O trong mặt phẳng phức, biết rằng một đỉnh biểu diễn số i.

Bài 3

Xác định các số phức biểu diễn bởi các đỉnh của một lục giác đều có tâm là gốc tọa độ \(O\) trong mặt phẳng phức, biết rằng một đỉnh biểu diễn số i.

Giải

Điểm A biểu diễn số \(i\).

F có tọa độ \(\left( {\cos {\pi  \over 6};\sin {\pi  \over 6}} \right) = \left( {{{\sqrt 3 } \over 2};{1 \over 2}} \right)\) nên F biểu diễn số phức \({{\sqrt 3 } \over 2} + {1 \over 2}i.\)

E đối xứng với F qua \(Ox\) nên E biểu diễn số phức \({{\sqrt 3 } \over 2} - {1 \over 2}i.\)

B đối xứng với E qua O nên B biểu diễn số \( - {{\sqrt 3 } \over 2} + {1 \over 2}i.\)

C đối xứng với F qua O nên C biểu diễn số phức \( - {{\sqrt 3 } \over 2} - {1 \over 2}i.\)

D đối xứng với A qua O nên D biểu diễn số phức \(–i\).

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật