Giải bài 23 trang 29 SGK Hình học 12 Nâng cao
Cho khối chóp tam giác S.ABC. Trên ba đường thẳng SA, SB,SC lần lượt lấy ba điểm A’, B’, C' khác với S. Gọi V và V’ lần lượt là thể tích của các khối chóp S.ABC và S.A'B'C'. Chứng minh rằng:
- Bài học cùng chủ đề:
- Bài 25 trang 29 SGK Hình học 12 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 23. Cho khối chóp tam giác \(S.ABC\). Trên ba đường thẳng \(SA, SB,SC\) lần lượt lấy ba điểm \(A’, B’, C'\) khác với \(S\). Gọi \(V\) và \(V’\) lần lượt là thể tích của các khối chóp \(S.ABC\) và \(S.A'B'C'\). Chứng minh rằng:
\({V \over {V'}} = {{SA} \over {SA'}}.{{SB} \over {SB'}}.{{SC} \over {SC'}}\)
Giải
Gọi \(H\) và \(H’\) lần lượt là hình chiếu của \(A\) và \(A’\) trên mp \((SBC)\). Khi đó \(3\) điểm \(S, H, H’\) thẳng hàng (vì chúng là hình chiếu của ba điểm thẳng hàng \(S, A, A’\) trên mp \((SBC)\)) và vì \(A’H’ // AH\) nên \({{AH} \over {A'H'}} = {{SA} \over {SA'}}\). Ta có:
\({{{S_{SBC}}} \over {{S_{SB'C'}}}} = {{{1 \over 2}SB.SC.sin\widehat {BSC}} \over {{1 \over 2}SB'.SC'.sin\widehat {B'SC'}}} = {{SB} \over {SB'}}.{{SC} \over {SC'}}\)
Suy ra \({V \over {V'}} = {{{V_{A.SBC}}} \over {{V_{A'.SB'C'}}}} = {{{1 \over 3}{S_{SBC}}.AH} \over {{1 \over 3}{S_{SB'C'}}.A'H'}} = {{SA} \over {SA'}}.{{SB} \over {SB'}}.{{SC} \over {SC'}}\)
loigaihay.com
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học