Giải bài 18 trang 28 SGK Hình học 12 Nâng cao

Tính thể tích của khối lăng trụ n-giác đều có tất cả các cạnh đều bằng a.

Bài 18. Tính thể tích của khối lăng trụ \(n\)-giác đều có tất cả các cạnh đều bằng \(a\).

Giải

 

Gọi \({A_1}{A_2}...{A_n}\) là đáy của khối lăng trụ \(n\)-giác đều và \(O\) là tâm của đáy.
Gọi \(I\) là trung điểm của \({A_1}{A_2}\) ta có \(OI \bot {A_1}{A_2}\).
Trong \(\Delta {A_1}IO\): \(\cot \widehat {{A_1}IO} = {{OI} \over {{A_1}I}} \Rightarrow OI = {a \over 2}\cot {\pi  \over n}\).
Diện tích đáy của khối lăng trụ đều là \(S = n.{S_{O{A_1}{A_2}}} = n{1 \over 2}a.{a \over 2}\cot {\pi  \over n} = {1 \over 4}n{a^2}\cot {\pi  \over n}\)
Chiều cao của khối lăng trụ đều là \(a\) nên thể tích của nó là:\(V = B.h = {1 \over 4}n{a^3}.\cot {\pi  \over n}\)

dayhoctot.com

Các bài học liên quan
Bài 22 trang 28 SGK Hình học 12 Nâng cao
Bài 24 trang 29 SKG Hình học 12 Nâng cao
Bài 23 trang 29 SGK Hình học 12 Nâng cao
Bài 1 trang 30 SGK Hình học 12 Nâng cao
Bài 2 trang 31 SGK Hình học 12 Nâng cao
Bài 3 trang 31 SKG Hình học 12 Nâng cao

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật