Giải bài 1 trang 34 SGK Hình học 10 Nâng cao
Cho tam giác ABC . Hãy xác định các vectơ
- Bài học cùng chủ đề:
- Bài 2 trang 34 SGK Hình học 10 Nâng cao
- Bài 3 trang 34 SGK Hình học 10 Nâng cao
- Bài 4 trang 34 SGK Hình học 10 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 1. Cho tam giác \(ABC\) . Hãy xác định các vec tơ
\(\eqalign{
& \overrightarrow {AB} + \overrightarrow {BC} \,\,;\,\,\,\,\,\,\overrightarrow {CB} + \overrightarrow {BA} \,\,;\,\,\,\,\,\overrightarrow {AB} + \overrightarrow {CA} \,\,;\,\,\,\,\overrightarrow {BA} + \overrightarrow {CB} \,\,;\, \cr
& \overrightarrow {BA} + \overrightarrow {CA} \,\,;\,\,\,\,\,\,\,\overrightarrow {CB} - \overrightarrow {CA} \,\,;\,\,\,\,\,\overrightarrow {AB} - \overrightarrow {CB} \,\,;\,\,\,\,\overrightarrow {BC} - \overrightarrow {AB} \,\,.\, \cr} \)
Hướng dẫn trả lời
Ta có
\(\eqalign{
& \overrightarrow {AB} + \overrightarrow {BC} \,\, = \overrightarrow {AC} \,\,\,\,\, \cr
& \overrightarrow {CB} + \overrightarrow {BA} \,\, = \overrightarrow {CA} \,\,\,\,\,\,\,\,\,\, \cr
& \overrightarrow {AB} + \overrightarrow {CA} \,\, = \,\overrightarrow {CA} \, + \,\overrightarrow {AB} \, = \,\overrightarrow {CB} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \cr
& \overrightarrow {BA} + \overrightarrow {CB} \,\, = \overrightarrow {CB} + \overrightarrow {BA} = \overrightarrow {CA} \cr} \)
\(\overrightarrow {BA} + \overrightarrow {CA} = \overrightarrow {BA} + \overrightarrow {AD} = \overrightarrow {BD} \) (Với \(D\) thỏa mãn \(\overrightarrow {CA} = \overrightarrow {AD} \), tức \(D\) là điểm đối xứng với \(C\) qua \(A\)).
\(\eqalign{
& \overrightarrow {CB} - \overrightarrow {CA} = \overrightarrow {AB} \cr
& \overrightarrow {AB} - \overrightarrow {CB} = \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \cr} \)
\(\overrightarrow {BC} - \overrightarrow {AB} = \overrightarrow {BC} + \overrightarrow {BA} = \overrightarrow {BE} \) (Với \(E\) là điểm sao cho \(BCEA\) là hình bình hành).
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học