Giải bài 2 trang 91 SGK Hình học 12

Trong hệ toạ độ Oxyz, cho mặt cầu (S) có đường kính là AB

Bài 2. Trong hệ toạ độ \(Oxyz\), cho mặt cầu \((S)\) có đường kính là \(AB\) biết rằng \(A( 6 ; 2 ; -5), B(-4 ; 0 ; 7)\).

a) Tìm toạ độ tâm \(I\) và tính bán kính \(r\) của mặt cầu \((S)\)

b) Lập phương trình của mặt cầu \((S)\).

c) Lập phương trình của mặt phẳng \((α)\) tiếp xúc với mặt cầu \((S)\) tại điểm \(A\).

Giải

a) Tâm \(I\) của mặt cầu là trung điểm của đoạn thẳng \(AB\):

\(\left\{ \matrix{
{x_1} = {1 \over 2}(6 - 4) \Rightarrow {x_1} = 1 \hfill \cr
{y_1} = {1 \over 2}(2 + 0) \Rightarrow {y_1} = 1 \hfill \cr  
{z_1} = {1 \over 2}(7 - 5) \Rightarrow {z_1} = 1 \hfill \cr} \right.\)

Vậy \(I(1; 1; 1)\)                   

Bán kính \(R = {{AB} \over 2}\)

\(A{B^2} = {\rm{ }}{\left( { - 4{\rm{ }} - {\rm{ }}6} \right)^2} + {\rm{ }}{\left( {{\rm{ }}0{\rm{ }} - {\rm{ }}2} \right)^2} + {\rm{ }}{\left( {7{\rm{ }} + {\rm{ }}5} \right)^2} = {\rm{ }}248\)

\( \Rightarrow AB = \sqrt {248}  = 2\sqrt {62} \)

Vậy \(R = {{AB} \over 2} = \sqrt {62} \)

b) Phương trình mặt cầu \((S)\)

\({\left( {x{\rm{ }} - {\rm{ }}1} \right)^2}{\rm{ }} + {\rm{ }}{\left( {y{\rm{ }} - {\rm{ }}1} \right)^2} + {\rm{ }}{\left( {z{\rm{ }} - {\rm{ }}1} \right)^{2}} = {\rm{ }}62\)

\( \Leftrightarrow \) \({x^2}{\rm{ }} + {\rm{ }}{y^2} + {\rm{ }}{z^2} - {\rm{ }}2x{\rm{ }} - {\rm{ }}2y{\rm{ }} - {\rm{ }}2z{\rm{ }} - {\rm{ }}59{\rm{ }} = {\rm{ }}0\)

c) Mặt phẳng tiếp xúc với mặt cầu tại điểm \(A\) chính là mặt phẳng qua \(A\) và vuông góc với bán kính \(IA\). Ta có:

\(\overrightarrow {IA}  = (5; 1 ; -6)\)

Phương trình mặt phẳng cần tìm là:

\(5(x - 6) + 1(y - 2) - 6(z + 5) = 0\)

\( \Leftrightarrow 5x + y - 6z - 62 = 0\)

Các bài học liên quan
Bài 9 trang 93 SGK Hình học 12
Các chương học và chủ đề lớn

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật