Giải bài 6 trang 92 SGK Hình học 12

Trong hệ toạ độ Oxyz, cho mặt phẳng (α) có phương trình 3x + 5y - z -2 = 0

Bài 6. Trong hệ toạ độ \(Oxyz\), cho mặt phẳng \((α)\) có phương trình \(3x + 5y - z -2 = 0\) và đường thẳng \(d\) có phương trình 

\(\left\{ \matrix{
x = 12 + 4t \hfill \cr
y = 9 + 3t \hfill \cr
z = 1 + t. \hfill \cr} \right.\)

a) Tìm giao điểm \(M\) của đường thẳng \(d\) và mặt phẳng \((α)\).

b) Viết phương trình mặt phẳng \((β)\) chứa điểm \(M\) và vuông góc với đường thẳng \(d\).

Giải

a) Thay toạ độ \(x, y, z\) trong phương trình đường thẳng \(d\) vào phương trình \((α)\), ta có: \(3(12 + 4t) + 5( 9 + 3t) - (1 + t) - 2 = 0\).

\(\Rightarrow 26t + 78 = 0\) \( \Rightarrow  t = - 3\) \( \Rightarrow  M(0; 0; - 2)\).

b) Vectơ \(\overrightarrow u (4; 3; 1)\) là vectơ chỉ phương của \(d\). Mặt phẳng \((β)\) vuông góc với \(d\) nhận \(\overrightarrow u \) làm vectơ pháp tuyến. Vì \(M(0; 0; -2) ∈ (β)\) nên phương trình \((β)\) có dạng:

\(4(x - 0) + 3(y - 0) + (z + 2) = 0\)

hay \(4x + 3y + z + 2 = 0\)

Các bài học liên quan
Các chương học và chủ đề lớn

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật