Giải bài 4 trang 92 SGK Hình học 12

Trong hệ toạ độ Oxyz, lập phương trình tham số của đường thẳng:

Bài 4. Trong hệ toạ độ \(Oxyz\), lập phương trình tham số của đường thẳng:

a) Đi qua hai điểm \(A(1 ; 0 ; -3), B(3 ; -1 ; 0)\).

b) Đi qua điểm \(M(2 ; 3 ; -5)\) và song song với đường thẳng \(∆\) có phương trình.

\(\left\{ \matrix{
x = - 2 + 2t \hfill \cr
y = 3 - 4t \hfill \cr
z = - 5t. \hfill \cr} \right.\)

Giải

a) Đường thẳng \(d\) qua \(A, B\) có vectơ chỉ phương \((2, -1, 3)\) nên phương trình tham số của \(d\) có dạng:

\(\left\{ \matrix{
x = 1 + 2t \hfill \cr
y = - t \hfill \cr
z = - 3 + 3t \hfill \cr} \right.\)

với \(t ∈ \mathbb{R}\).

b) Đường thẳng \(d // ∆\). Mà \(\overrightarrow u (2, -4, -5)\) là vectơ chỉ phương của \(∆\) nên cũng là vectơ chỉ phương của \(d\). Phương trình tham số của đường thẳng \(d\) là:

\(\left\{ \matrix{
x = 2 + 2s \hfill \cr
y = 3 - 4s \hfill \cr
z = - 5 - 5s \hfill \cr} \right.\)

với \(s ∈ \mathbb{R}\).

Các bài học liên quan
Bài 9 trang 93 SGK Hình học 12
Các chương học và chủ đề lớn

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật