Giải bài 9 trang 9 SGK Đại số và Giải tích 12 Nâng cao
Hướng dẫn: Chứng minh hàm số đồng biến trên nửa khoảng
- Bài học cùng chủ đề:
- Bài 10 trang 9 SGK Đại số và Giải tích 12 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 9. Chứng minh rằng: \(\sin x + \tan x > 2x\) với mọi \(x \in \left( {0;{\pi \over 2}} \right)\).
Giải
Chứng minh hàm số \(f\left( x \right) = \sin x + \tan x - 2x\) đồng biến trên nửa khoảng \(\left[ {0;{\pi \over 2}} \right)\).
Hàm số \(f\left( x \right) = \sin x + \tan x - 2x\) liên tục trên nửa khoảng \(\left[ {0;{\pi \over 2}} \right)\) và có đạo hàm: \(f'\left( x \right) = \cos x + {1 \over {{{\cos }^2}x}}\, - 2\)
Vì \(x \in \left( {0;{\pi \over 2}} \right)\) nên \(0 < \cos x < 1 \Rightarrow \cos x > {\cos ^2}x\)
\( \Rightarrow \cos x + {1 \over {{{\cos }^2}x}}\, - 2 > {\cos ^2}x + {1 \over {{{\cos }^2}x}}\, - 2 > 0\)
( vì \({\cos ^2}x + {1 \over {{{\cos }^2}x}} > 2\) với mọi \(\,x \in \left( {0;{\pi \over 2}} \right)\))
Do đó \(f'\left( x \right) > 0\) với mọi \(x \in \left( {0;{\pi \over 2}} \right)\)
Suy ra hàm số \(f\) đồng biến trên \(\,\left[ {0;{\pi \over 2}} \right)\)
Khi đó ta có \(f\left( x \right) > f\left( 0 \right) = 0\) với mọi \(x \in \left( {0;{\pi \over 2}} \right)\) tức là \(\sin x + \tan x > 2x\) với mọi \(x \in \left( {0;{\pi \over 2}} \right)\).
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học