Giải bài 13 trang 17 SGK Đại số và Giải tích 12 Nâng cao

Tìm các hệ số a, b, c, d của hàm số sao cho hàm số đạt cực tiểu và đạt cực đại

Bài 13. Tìm các hệ số \(a, b, c, d\) của hàm số:  \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) sao cho hàm số \(f\) đạt cực tiểu tại điểm \(x = 0,f\left( 0 \right) = 0\) và đạt cực đại tại điểm \(x = 1,f\left( 1 \right) = 1.\)

Giải

Ta có: \(f'\left( x \right) = 3a{x^2} + 2bx + c\)

\(f\) đạt cực tiểu tại điểm \(x=0\) nên \(f'\left( 0 \right) = 0 \Rightarrow c = 0\)

\(f\left( 0 \right) = 0 \Rightarrow d = 0\). Vậy \(f\left( x \right) = a{x^3} + b{x^2}\)

\(f\) đạt cực đại tại điểm \(x=1\) nên \(f'\left( 1 \right) = 0 \Rightarrow 3a + 2b = 0\)

\(f\left( 1 \right) = 1 \Rightarrow a + b = 1\)

Ta có hệ phương trình:

\(\left\{ \matrix{
3a + 2b = 0 \hfill \cr
a + b = 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
a = - 2 \hfill \cr
b = 3 \hfill \cr} \right.\)

Thử lại với \(a=-2, b=3, c=d=0\) ta được:

\(f\left( x \right) =  - 2{x^3} + 3{x^2};\,\,\,\,\,\,\,f'\left( x \right) =  - 6{x^2} + 6x;\,\,\,\,\,\,f''\left( x \right) =  - 12x + 6\)

\(f''\left( 0 \right) = 6 > 0\) : Hàm số đạt cực tiểu tại điểm \(x=0\); \(f\left( 0 \right) = 0;f''\left( 1 \right) =  - 6 < 0\)

Hàm số đạt cực đại tại điểm \(x = 1;f\left( 1 \right) = 1\)

Vậy \(a =  - 2;b = 3;c = d = 0\).

Các bài học liên quan
Bài 19 trang 22 SGK Đại số và Giải tích 12 Nâng cao
Bài 20 trang 22, SGK Đại số và Giải tích 12 Nâng cao

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật