Giải bài 58 Trang 177 SGK Đại số và Giải tích 12 Nâng cao
cho hình phẳng A được giới hạn bởi đường cong có phương trình và các đường thẳng Tính thể tích khối tròn xoay tạo thành khi quay A quanh trục hoành.
- Bài học cùng chủ đề:
- Bài 59 Trang 177 SGK Đại số và Giải tích 12 Nâng cao
- Bài 57 Trang 192 SGK Đại số và Giải tích 12 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 58. Cho hình phẳng A được giới hạn bởi đường cong có phương trình \(y = {x^{{1 \over 2}}}{e^{{x \over 2}}}\) và các đường thẳng \(x = 1,x = 2,y = 0.\) Tính thể tích khối tròn xoay tạo thành khi quay A quanh trục hoành.
Giải
Thể tích cần tìm là: \(V = \pi \int\limits_1^2 {x.{e^x}} dx\)
Đặt
\(\left\{ \matrix{
u = x \hfill \cr
dv = {e^x}dx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = dx \hfill \cr
v = {e^x} \hfill \cr} \right.\)
Do đó \(V = \pi \left( {\left. {x{e^x}} \right|_1^2 - \int\limits_1^2 {{e^x}dx} } \right) = \pi \left( {2{e^2} - e - {e^2} + e} \right) = \pi {e^2}\)
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học