Giải bài 57 Trang 192 SGK Đại số và Giải tích 12 Nâng cao
Cho hình phẳng A được giới hạn bởi đường cong có phương trình và các đường thẳng . Tính thể tích khối tròn xoay tạo thành khi quay A.
Bài 57.Cho hình phẳng A được giới hạn bởi đường cong có phương trình \(x - {y^2} = 0\) và các đường thẳng \(y = 2,x = 0\). Tính thể tích khối tròn xoay tạo thành khi quay A.
a) Quanh trục hoành; b) quanh trục tung
Giải
a) Hoành độ giao điểm của đường cong \(y=\sqrt x\) và \(y=2\) là:
\(\sqrt x=2\Rightarrow x=4\)
Thể tích khối tròn xoay tạo thành khi quay A quanh \(Ox\) là:
\(V = \pi \int\limits_0^4 {\left( {{2^2} - x} \right)} dx = \left. {\pi \left( {4x - {{{x^2}} \over 2}} \right)} \right|_0^4 = 8\pi \)
b) Thể tích khối tròn xoay tạo thành khi quay A quanh \(Oy\) là:
\(V = \pi \int\limits_0^2 {{y^4}dy} = \left. {{\pi \over 5}{y^5}} \right|_0^2 = {{32\pi } \over 5}\)
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học