Giải bài 6 trang 190 SGK Giải tích 12 nâng cao
Chứng minh rằng: a) Phần thực của số phức z bằng...
- Bài học cùng chủ đề:
- Bài 7 trang 190 SGK Đại số và Giải tích 12 Nâng cao
- Bài 8 trang 190 SGK Giải tích 12 Nâng cao
- Bài 9 trang 190 SGK Đại số và Giải tích 12 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 6. Chứng minh rằng:
a) Phần thực của số phức z bằng \({1 \over 2}\left( {z + \overline z } \right)\), phần ảo của số phức z bằng \({1 \over {2i}}\left( {z - \overline z } \right);\)
b) Số phức z là số ảo khi và chỉ khi \(z = - \overline z ;\)
c) Với mọi số phức z, z', ta có \(\overline {z + z'} = \overline z + \overline {z'} ,\,\overline {zz'} = \overline z .\,\overline {z'} \), và nếu \(z \ne 0\) thì \({{\overline {z'} } \over {\overline z }} = \overline {\left( {{{z'} \over z}} \right)} \).
Giải
a) Giả sử \(z=a+bi\;(a,b\in\mathbb R)\) thì \(\overline z = a - bi\)
Từ đó suy ra \(a = {1 \over 2}\left( {z + \overline z } \right);\,\,b = {1 \over {2i}}\left( {z - \overline z } \right)\)
b) z là số ảo khi và chỉ khi phần thực của z bằng 0
\(\Leftrightarrow {1 \over 2}\left( {z + \overline z } \right) = 0 \Leftrightarrow z = - \overline z \)
c) Giả sử \(z=a+bi;\; z'=a'+b'i\) \((a,b,a',b'\in\mathbb R)\)
Ta có:
\(\eqalign{
& \overline {z + z'} = \overline {(a + a') + (b + b')i} = a + a' - (b + b')i \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = a - bi + a' - b'i = \overline z + \overline {z'} \cr
& \overline {z.z'} = \overline {\left( {a + bi} \right).\left( {a' + b'i} \right)} = \overline {\left( {aa' - bb'} \right) + \left( {ab' + a'b} \right)i} \cr
& \,\,\,\,\,\,\,\,\,\, = aa' - bb' - \left( {ab' + a'b} \right)i \cr
& \,\,\,\,\,\,\,\,\,\, = \left( {a - bi} \right)\left( {a' - b'i} \right) = \overline z .\overline {z'} \cr
& \overline {\left( {{{z'} \over z}} \right)} = \overline {\left( {{{z'.\overline z } \over {z.\overline z }}} \right)} = {1 \over {z.\overline z }}.\overline {z'} .\overline {\overline z } = {1 \over {z.\overline z }}.\overline {z'} .z = {{\overline {z'} } \over {\overline z }} \cr} \)
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học