Giải bài 50 trang 61 SGK giải tích 12 nâng cao
Khảo sát sự biến thiên và vẽ đồ thị hàm số sau:
- Bài học cùng chủ đề:
- Bài 51 trang 61 SGK giải tích 12 nâng cao
- Bài 52 trang 62 SGK giải tích 12 nâng cao
- Bài 53 trang 62 SGK giải tích 12 nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 50. Khảo sát sự biến thiên và vẽ đồ thị hàm số sau:
a) \(y = {{x + 1} \over {x - 1}}\) b) \(y = {{2x + 1} \over {1 - 3x}}\)
Giải
a) TXĐ: \(D =\mathbb R\backslash \left\{ 1 \right\}\)
\(\mathop {\lim }\limits_{x \to {1^ + }} y = + \infty ;\,\,\mathop {\lim }\limits_{x \to {1^ - }} y = - \infty \) nên \(x = 1\) là tiệm cận đứng.
Vì \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to - \infty } = 1\) nên \(y = 1\) là tiệm cận ngang.
\(y = {{\left| \matrix{
1\,\,\,\,\,\,\,\,\,\,\,1 \hfill \cr
1\,\,\,\,\,\,\, - 1 \hfill \cr} \right|} \over {{{\left( {x - 1} \right)}^2}}} = {{ - 2} \over {{{\left( {x - 1} \right)}^2}}} < 0\) với mọi \(x \ne 1\)
Hàm số nghịch biến trên mỗi khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\)
Đồ thị hàm số cắt trục tung tại điểm \((0;-1)\) cắt trục hoành tại điểm \((-1;0)\)
Đồ thị nhận giao điểm hai tiệm cận \(I(1;1)\) làm tâm đối xứng.
b) TXĐ: \(D =\mathbb R\backslash \left\{ {{1 \over 3}} \right\}\)
\(\mathop {\lim }\limits_{x \to {{\left( {{1 \over 3}} \right)}^ + }} y = - \infty ;\,\mathop {\lim }\limits_{x \to {{\left( {{1 \over 3}} \right)}^ - }} y = - \infty \) nên \(x = {1 \over 3}\) là tiệm cận đứng.
Vì \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to - \infty } = - {2 \over 3}\) nên \(y = - {2 \over 3}\) là tiệm cận ngang.
\(y = {{\left| \matrix{
2\,\,\,\,\,\,\,1 \hfill \cr
- 3\,\,\,\,1 \hfill \cr} \right|} \over {{{\left( {1 - 3x} \right)}^2}}} = {5 \over {{{\left( {1 - 3x} \right)}^2}}} > 0\) với mọi \(x \ne {1 \over 3}\)
Hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ;{1 \over 3}} \right)\) và \(\left( {{1 \over 3}; + \infty } \right)\)
Đồ thị cắt trục tung tại điểm \((0;1)\) và cắt trục hoành tại điểm \(\left( { - {1 \over 2};0} \right)\).
Đồ thị nhận giao điểm hai tiệm cận \(I\left( {{1 \over 3};{1 \over 2}} \right)\) làm tâm đối xứng.
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học