Giải bài 59 trang 56 SGK giải tích 12 nâng cao
Chứng minh rằng các đồ thị của ba hàm số: tiếp xúc với nhau tại điểm A(-1;2) (tức là chúng có cùng tiếp tuyến tại A).
- Bài học cùng chủ đề:
- Bài 60 trang 56 SGK giải tích 12 nâng cao
- Bài 61 trang 56 SGK giải tích 12 nâng cao
- Bài 62 trang 57 SGK giải tích 12 nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 59. Chứng minh rằng các đồ thị của ba hàm số: \(f\left( x \right) = - {x^2} + 3x + 6\); \(g\left( x \right) = {x^3} - {x^2} + 4\) và \(h\left( x \right) = {x^2} + 7x + 8\) tiếp xúc với nhau tại điểm \(A(-1;2)\) (tức là chúng có cùng tiếp tuyến tại \(A\)).
Giải
Ta có: \(f\left( { - 1} \right) = g\left( { - 1} \right) = h\left( { - 1} \right) = 2\)
Do đó điểm \(A(-1;2)\) là điểm chung của ba đường cong đã cho. Ngoài ra, ta có:
\(\eqalign{
& f'\left( x \right) = - 2x + 3;\,g'\left( x \right) = 3{x^2} - 2x;\,h'\left( x \right) = 2x + 7 \cr
& f'\left( { - 1} \right) = g'\left( { - 1} \right) = h'\left( { - 1} \right) = 5 \cr} \)
Vậy ba đường cong có tiếp tuyến chung điểm \(A\).
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học