Giải bài 13 trang 20 SGK Hình học 12 Nâng cao
Hai đỉnh của một khối tám mặt đều được gọi là hai đỉnh đối diện nếu chúng không cùng thuộc một cạnh của khối đó. Đoạn thẳng nối hai đỉnh đối diện gọi là đường chéo của khối tám mặt đều. Chứng minh rằng trong khối tám mặt đều: a) Ba đường chéo cắt nhau tại trung điểm của mỗi đường ; b) Ba đường chéo đôi một vuông góc với nhau ; c) Ba đường chéo bằng nhau.
- Bài học cùng chủ đề:
- Bài 14 trang 20 SGK Hình học 12 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 13. Hai đỉnh của một khối tám mặt đều được gọi là hai đỉnh đối diện nếu chúng không cùng thuộc một cạnh của khối đó. Đoạn thẳng nối hai đỉnh đối diện gọi là đường chéo của khối tám mặt đều. Chứng minh rằng trong khối tám mặt đều :
a) Ba đường chéo cắt nhau tại trung điểm của mỗi đường ;
b) Ba đường chéo đôi một vuông góc với nhau ;
c) Ba đường chéo bằng nhau.
Giải
Giả sử \(SABCDS’\) là khối tám mặt đều. Ba đường chéo của nó là \(SS’, AC\) và \(BD\). Bốn điểm \(A, B, C, D\) cách đều hai điểm \(S\) và \(S’\) nên cùng nằm trên một mặt phẳng.
Vậy \(ABCD\) là hình thoi, ngoài ra \(S\) cách đều \(A, B, C, D\) nên hình thoi đó là hình vuông. Suy ra hai đường chéo \(AC\) và \(BD\) cắt nhau tại trung điểm của mỗi đường, chúng vuông góc với nhau và có độ dài bằng nhau. Tương tự đối với các cặp đường chéo còn lại.
dayhoctot.com
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học