Giải bài 42 trang 63 SGK Đại số 10 nâng cao

Trong mỗi trường hợp cho dưới đây, hãy vẽ đồ thị hàm số của các hàm số trên cùng một hệ trục tọa độ rồi xác định tọa độ giao điểm của chúng.

Trong mỗi trường hợp cho dưới đây, hãy vẽ đồ thị hàm số của các hàm số trên cùng một hệ trục tọa độ rồi xác định tọa độ giao điểm của chúng.

a) \(y = x - 1\) và \(y = x^2 - 2x - 1\);

b) \(y = -x + 3\) và \(y = -x^2 - 4x + 1\);

c) \(y = 2x - 5\) và \(y = x^2 - 4x - 1\).

Đáp án

a) Đường thẳng d: \(y = x – 1\) qua \(A(0; -1); B(1; 0)\)

Parabol (P): \(y = x^2– 2x – 1\) có đỉnh \(S(1; -2)\)

Phương trình hoành độ giao điểm của d và (P) là:

\(x^2 – 2x – 1 = x – 1  ⇔ x^2  - 3x = 0\)

\( \Leftrightarrow \left[ \matrix{
x = 0\,\,(y = - 1) \hfill \cr
x = 3\,\,(y = 2) \hfill \cr} \right.\)

Giao điểm của d và (P) là: \(A(0, -1)\) và \(C(3, 2)\)

 

b) Đường thẳng d: \(y = -x + 3\) qua \(A(0, 3); B(3, 0)\)

Parabol (P): \(y = -x^2 – 4x + 1\) có đỉnh \(S(-2, 5)\)

Phương trình hoành độ giao điểm của và (P) là:

\(\eqalign{
& - {x^2} - 4x + 1 = - x + 3 \cr
& \Leftrightarrow {x^2} + 3x + 2 = 0 \cr
& \Leftrightarrow \left[ \matrix{
x = - 1\,\,\,\,(y = 4) \hfill \cr
x = - 2\,\,\,\,(y = 5) \hfill \cr} \right. \cr} \) 

Giao điểm của d và (P) là \((-1, 4)\) và \((-2, 5)\)

 

c) Đường thẳng d: \(y = 2x – 5\) đi qua \(A(0, -5); B(1, -3)\)

Parabol (P): \(y  = x^2 – 4x - 1\) có đỉnh \(S(2, -5)\)

Phương trình hoành độ giao điểm của và (P) là:

\(\eqalign{
& {x^2} - 4x - 1 = 2x - 5 \Leftrightarrow {x^2} - 6x + 4 = 0 \cr
& \Leftrightarrow \left[ \matrix{
x = 3 - \sqrt 5 \,\,\,\,\,\,\,\,(y = 1 - 2\sqrt 5 ) \hfill \cr
x = 3 + \sqrt 5 \,\,\,\,\,\,\,\,\,(y = 1 + 2\sqrt 5 ) \hfill \cr} \right. \cr} \) 

Giao điểm của (P) và d là: \((3 - \sqrt 5 ,\,1 - 2\sqrt 5 );\,(3 + \sqrt 5 ,\,1 + 2\sqrt 5 )\)

 

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 10 mới cập nhật