Giải bài 21 trang 65 SGK Hình học 10 nâng cao
Chứng minh rằng nếu ba góc của tam giác ABC thỏa mãn hệ thức
- Bài học cùng chủ đề:
- Bài 22 trang 65 SGK Hình học 10 nâng cao
- Bài 23 trang 65 SGK Hình học 10 nâng cao
- Bài 24 trang 66 SGK Hình học 10 nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 21. Chứng minh rằng nếu ba góc của tam giác \(ABC\) thỏa mãn hệ thức \(\sin A = 2\sin B.\cos C\) thì \(ABC\) là tam giác cân.
Hướng dẫn trả lời
Áp dụng định lí sin và cosin ta có
\(\sin A = {a \over {2R}},\,\,\sin B = {b \over {2R}},\,\,\cos C = {{{a^2} + {b^2} - {c^2}} \over {2ab}}\)
Do đó \(\sin A = 2\sin B\cos C\,\,\, \Leftrightarrow \,\,{a \over {2R}} = 2.{b \over {2R}}.{{{a^2} + {b^2} - {c^2}} \over {2ab}}\,\,\,\)
\( \Leftrightarrow \,\,{a^2} = {a^2} + {b^2} - {c^2}\,\,\, \Leftrightarrow \,\,b^2 = c^2\, \Leftrightarrow \,\,b=c\)
Vậy \(ABC\) là tam giác cân.
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học