Giải bài 46 trang 44 SGK giải tích 12 nâng cao
Cho hàm số: a) Tìm các giá trị của m để đồ thị của hàm số đã cho cắt trục hoành tại 3 điểm phân biệt. b) Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m = -1
- Bài học cùng chủ đề:
- Bài 47 trang 45 SGK giải tích 12 nâng cao
- Bài 48 trang 45 SGK giải tích 12 nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 46. Cho hàm số: \(y = \left( {x + 1} \right)\left( {{x^2} + 2mx + m + 2} \right)\)
a) Tìm các giá trị của \(m\) để đồ thị của hàm số đã cho cắt trục hoành tại \(3\) điểm phân biệt.
b) Khảo sát sự biến thiên và vẽ đồ thị của hàm số với \(m = -1\)
Giải
a) Hoành độ giao điểm của đường cong đã cho và trục hoành là nghiệm của phương trình:
\(\left( {x + 1} \right)\left( {{x^2} + 2mx + m + 2} \right) = 0 \Leftrightarrow \left[ \matrix{
x = - 1 \hfill \cr
{x^2} + 2mx + m + 2 = 0\,\,\left( 1 \right) \hfill \cr} \right.\)
đồ thị của hàm số đã cho cắt trục hoành tại \(3\) điểm phân biệt khi và chỉ khia phương trình (1) có hai nghiệm phân biệt khác -1, tức là:
\(\eqalign{
& \left\{ \matrix{
\Delta ' > 0 \hfill \cr
f\left( { - 1} \right) \ne 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{m^2}-m - 2 > 0 \hfill \cr
- m + 3 \ne 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
\left[ \matrix{
m < - 1 \hfill \cr
m > 2 \hfill \cr} \right. \hfill \cr
m \ne 3 \hfill \cr} \right. \cr
& \Leftrightarrow m \in \left( { - \infty ; - 1} \right) \cup \left( {2;3} \right) \cup \left( {3; + \infty } \right). \cr} \)
b) Với \(m =-1\) ta có \(y = \left( {x + 1} \right)\left( {{x^2} - 2x + 1} \right) = {x^3} - {x^2} - x + 1\)
TXĐ: \(D =\mathbb R\)
\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } y = + \infty ;\,\mathop {\lim }\limits_{x \to - \infty } y = - \infty \cr
& y' = 3{x^2} - 2x - 1;\,y' = 0 \Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr
x = - {1 \over 3} \hfill \cr} \right.;\,\,y\left( 1 \right) = 0;\,\,y\left( { - {1 \over 3}} \right) = {{32} \over {27}} \cr} \)
Bảng biến thiên:
\(y'' = 6x - 2;\,y'' = 0 \Leftrightarrow x = {1 \over 3};\,y\left( {{1 \over 3}} \right) = {{16} \over {27}}\)
Xét dấu \(y”\)
Điểm uốn \(I\left( {{1 \over 3};{{16} \over {27}}} \right)\)
Điểm đồ thị đi qua:
\(x = 0 \Rightarrow y = 1\)
\(x = 2 \Rightarrow y = 3\)
\(x = -1 \Rightarrow y = 0\)
Đồ thị: Đồ thị nhận điểm uốn \(I\) làm tâm đối xứng.
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học