Giải bài 44 trang 44 SGK giải tích 12 nâng cao

Khảo sát sự biến thiên và vẽ đồ thị hàm số sau:

Bài 44.Khảo sát sự biến thiên và vẽ đồ thị hàm số sau:

a) \(y = {x^4} - 3{x^2} + 2\)             b) \(y =  - {x^4} - 2{x^2} + 1\)

Gỉải

a) TXĐ: \(D =\mathbb R\)

\(\eqalign{
& \mathop {\lim }\limits_{x \to \pm \infty } y = + \infty \cr
& y' = 4{x^3} - 6x;\,\,y' = 0 \Leftrightarrow \left[ \matrix{
x = 0;\,\,\,\,\,y\left( 0 \right) = 2 \hfill \cr
x = \pm \sqrt {{3 \over 2}} ;\,\,y\left( { \pm \sqrt {{3 \over 2}} } \right) = - {1 \over 4} \hfill \cr} \right. \cr} \)

Bảng biến thiên:

\(y'' = 12{x^3} - 6;\,\,y'' = 0 \Leftrightarrow x =  \pm \sqrt {{1 \over 2}} ;\,y = \left( { \pm \sqrt {{1 \over 2}} } \right) = {3 \over 4}\)
Xét dấu \(y”\)
 
Đồ thị có hai điểm uốn \({I_1}\left( { - \sqrt {{1 \over 2}} ;{3 \over 4}} \right)\)  và \({I_2}\left( {\sqrt {{1 \over 2}} ;{3 \over 4}} \right)\)
Điểm đặc biệt: \(x =  \pm 1 \Leftrightarrow y = 0,x =  \pm \sqrt 2  \Leftrightarrow y = 0.\)
Đồ thị: Đồ thị nhận trục tung làm trục đối xứng.


b) TXĐ: \(D =\mathbb R\)

\(\eqalign{
& \mathop {\lim }\limits_{x \to \pm \infty } y = - \infty \cr
& y' = - 4{x^3} - 4x = - 4x\left( {{x^2} + 1} \right) \cr
& y' = 0 \Leftrightarrow x = 0;y\left( 0 \right) = 1 \cr} \)

Bảng biến thiên:

\(y'' =  - 12{x^2} - 4 =  - 4\left( {3{x^2} + 1} \right) < 0\) với mọi \(x\)
Đồ thị không có điểm uốn.

Điểm đặc biệt \(x =  \pm 1 \Rightarrow y =  - 2\)
Đồ thị:


Đồ thị nhận trục tung làm trục đối xứng.

Các bài học liên quan
Bài 48 trang 45 SGK  giải tích 12 nâng cao
Bài 49 trang 61 SGK  giải tích 12 nâng cao
Bài 51 trang 61 SGK  giải tích 12 nâng cao
Bài 53 trang 62 SGK  giải tích 12 nâng cao

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật