Giải bài 4 trang 122 SGK Hình học 12 Nâng cao

Chứng minh rằng trung điểm các cạnh của một hình tứ diện đều là các đỉnh của một hình tám mặt đều. Hãy so sánh thể tích của tứ diện đều đã cho và thể tích của hình tám mặt đều đó.

Bài 4. Chứng minh rằng trung điểm các cạnh của một hình tứ diện đều là các đỉnh của một hình tám mặt đều. Hãy so sánh thể tích của tứ diện đều đã cho và thể tích của hình tám mặt đều đó.

Giải


Gọi M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, CD, AC, BD, AD, BC của tứ diện đều ABCD thì các tam giác MPR, MRQ, MQS, MSP, NPR, NRQ, NQS, NSP là những tam giác đều, vậy ta có hình tám mặt đều MNPQRS.

Vì các tứ diện AMPR, BMQS, CPSN, DQNR đều là những tứ diện đồng dạng với tứ diện ABCD với tỉ số \(k = {1 \over 2}\) nên ta có thể tích bằng \({V \over 8}.\)

Suy ra \({V_{MPRQSN}} = V - 4{V \over 8} = {V \over 2}.\)

Các bài học liên quan
Bài 8 trang 123 SGK Hình học 12 Nâng cao
Bài 9 trang 123 SGK Hình học 12 Nâng cao
Bài 10 trang 124 SGK Hình học 12 Nâng cao
Bài 11 trang 124 SGK Hình học 12 Nâng cao
Bài 12 trang 124 SGK Hình học 12 Nâng cao
II. Câu hỏi trắc nghiệm
Đề I trang 129 SGK Giải tích 12 Nâng cao

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật