Giải bài 6 trang 123 SGK Hình học 12 Nâng cao
Cho hình lục giác đều ABCDEF cạnh a. a) Tính thể tích hình tròn xoay sinh bởi lục giác đó khi quay quanh đường thẳng AD. b) Tính thế tích hình tròn xoay sinh bởi lục giác đó khi quay quanh đường thẳng đi qua trung điểm của các cạnh AB và DE.
- Bài học cùng chủ đề:
- Bài 7 trang 123 SGK Hình học 12 Nâng cao
- Bài 8 trang 123 SGK Hình học 12 Nâng cao
- Bài 9 trang 123 SGK Hình học 12 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 6. Cho hình lục giác đều ABCDEF cạnh a.
a) Tính thể tích hình tròn xoay sinh bởi lục giác đó khi quay quanh đường thẳng AD.
b) Tính thế tích hình tròn xoay sinh bởi lục giác đó khi quay quanh đường thẳng đi qua trung điểm của các cạnh AB và DE.
Giải
a)
Khi quay lục giác dều ABCDEF quanh đường thẳng AD, ta được khối tròn xoay hợp bởi ba khối: Khối nón \({N_1}\) sinh bởi tam giác ABF, khối trụ T sinh bởi hình chữ nhật BCEF và khối nón \({N_2}\) sinh bởi tam giác DCE. Hai khối nón và trụ đều có bán kính đáy là \(R = {{BF} \over 2} = {{a\sqrt 3 } \over 2}.\) Khối trụ có chiều cao a và các khối nón có chiều cao \({a \over 2}.\) Vậy khối tròn xoay sinh bởi lục giác đã cho có thể tích là:
\(V = \pi {\left( {{{a\sqrt 3 } \over 2}} \right)^2}a + 2.{1 \over 3}\pi {\left( {{{a\sqrt 3 } \over 2}} \right)^2}.{a \over 2} = \pi {a^3}.\)
b)
Gọi \(\Delta \) là đường thẳng nối trung điểm của AB và ED. Khi đó BC và AF cắt nhau tại điểm O trên \(\Delta \), Cd và FE cắt nhau tại O’ trên \(\Delta \). Gọi V, \({V_1},{V_2}\) là thể tích các khối tròn xoay lần lượt sinh ra bởi lục giác đều ABCDEF, tam giác OCF và tam giác OAB khi quay quanh \(\Delta \), ta có:
\(\eqalign{
& {V_1} = {1 \over 3}\pi {a^2}a\sqrt 3 = {{\pi {a^3}\sqrt 3 } \over 3} \cr
& {V_2} = {1 \over 3}\pi {\left( {{a \over 2}} \right)^2}{{a\sqrt 3 } \over 2} = {{\pi {a^3}\sqrt 3 } \over {24}}. \cr} \)
Do đó \(V = 2\left( {{V_1} - {V_2}} \right) = {{7\sqrt 3 \pi {a^3}} \over {12}}.\)
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học