Giải bài 12 trang 124 SGK Hình học 12 Nâng cao
Cho hình hộp chữ nhật ABCD.A’B’C’D’ với AB = a, BC = b, CC’ = c. a) Tính khoảng cách từ điểm A tới mp(A’BD). b) Tính khoảng cách từ điểm A’ tới đường thẳng C’D. c) Tính khoảng cách giữa hai đường thẳng BC’ và CD’.
Bài 12.Cho hình hộp chữ nhật ABCD.A’B’C’D’ với AB = a, BC = b, CC’ = c.
a) Tính khoảng cách từ điểm A tới mp(A’BD).
b) Tính khoảng cách từ điểm A’ tới đường thẳng C’D.
c) Tính khoảng cách giữa hai đường thẳng BC’ và CD’.
Giải
a) Chọn hệ trục tọa độ Oxyz như hình vẽ.
Ta có: \(A'\left( {0;0;c} \right),\,\,B\left( {a;0;0} \right),\,\,D\left( {0;b;0} \right).\)
Phương trình mặt phẳng (A’BD) là: \({x \over a} + {y \over b} + {z \over c} - 1 = 0.\)
Khoảng cách từ A(0; 0; 0) tới mp(A’BD) là:
\(d = {{\left| { - 1} \right|} \over {\sqrt {{1 \over {{a^2}}} + {1 \over {{b^2}}} + {1 \over {{c^2}}}} }} = {{abc} \over {\sqrt {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} }}.\)
b) Ta có \(C'\left( {a;b;c} \right).\)
\(\eqalign{
& \overrightarrow {A'C'} = \left( {a,b,0} \right),\overrightarrow {C'D} = \left( { - a;0; - c} \right) \cr
& \left[ {\overrightarrow {A'C'} ,\overrightarrow {C'D} } \right] = \left( { - bc,ac,ab} \right). \cr} \)
Khoảng cách từ \(A'\left( {0,0,c} \right)\) tới đường thẳng C’D là:
\({h_1} = {{\left| {\left[ {\overrightarrow {A'C'} ,\overrightarrow {C'D} } \right]} \right|} \over {\left| {\overrightarrow {C'D} } \right|}} = {{\sqrt {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} } \over {\sqrt {{a^2} + {c^2}} }}.\)
c) Ta có \(\overrightarrow {BC'} = \left( {0,b,c} \right),\overrightarrow {CD'} = \left( { - a,0,c} \right),\overrightarrow {BC} = \left( {0,b,0} \right),\) khoảng cách giữa BC’ và CD’ là:
\({h_2} = {{\left| {\left[ {\overrightarrow {BC'} ,\overrightarrow {CD'} } \right].\overrightarrow {BC} } \right|} \over {\left| {\left[ {\overrightarrow {BC'} ,\overrightarrow {CD'} } \right]} \right|}} = {{abc} \over {\sqrt {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} }}.\)
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học