Giải bài 29 trang 90 SGK Đại số và Giải tích 12 Nâng cao
Tính
- Bài học cùng chủ đề:
- Bài 30 trang 90 SGK Đại số và Giải tích 12 Nâng cao
- Bài 31 trang 90 SGK Đại số và Giải tích 12 Nâng cao
- Bài 32 trang 92 SGK Đại số và Giải tích 12 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 29. Tính \({3^{{{\log }_3}18}};{3^{5{{\log }_3}2}};{\left( {{1 \over 8}} \right)^{{{\log }_2}5}};{\left( {{1 \over {32}}} \right)^{{{\log }_{0,5}}2}}\)
Giải
Áp dụng \({a^{{{\log }_a}b}} = b\left( {a > 0,a \ne 1} \right)\)
\({3^{{{\log }_3}18}} = 18;\) \({3^{5{{\log }_3}2}} = {3^{lo{g_3}{2^5}}} = {2^5} = 32;\)
\({\left( {{1 \over 8}} \right)^{{{\log }_2}5}} = {\left( {{2^{ - 3}}} \right)^{{{\log }_2}5}} = {2^{\left( { - 3} \right){{\log }_2}5}} = {2^{{{\log }_2}{5^{ - 3}}}} = {5^{ - 3}} = {1 \over {125}};\)
\({\left( {{1 \over {32}}} \right)^{{{\log }_{0,5}}2}} = {\left( {{{\left( {{1 \over 2}} \right)}^5}} \right)^{{{\log }_{{1 \over 2}}}2}} = {\left( {{1 \over 2}} \right)^{lo{g_{{1 \over 2}}}{2^5}}} = {2^5} = 32;\)
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học