Giải câu 18 trang 214 SGK Giải tích 12 Nâng cao
Tính:
- Bài học cùng chủ đề:
- Câu 19 trang 214 SGK Giải tích 12 Nâng cao
- Câu 20 trang 214 SGK Giải tích 12 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Tính
\(\eqalign{
& a)\,\,{(\sqrt 3 + i)^2} - {(\sqrt 3 - i)^2} \cr
& b)\,{(\sqrt 3 + i)^2} + {(\sqrt 3 - i)^2} \cr
& c)\,{(\sqrt 3 + i)^3} - {(\sqrt 3 - i)^3} \cr
& d)\,{{{{(\sqrt 3 + i)}^2}} \over {{{(\sqrt 3 - i)}^2}}} \cr} \)
Giải
a)
\(\eqalign{
& {(\sqrt 3 + i)^2} - {(\sqrt 3 - i)^2} \cr&= {\rm{[}}\sqrt 3 + i + \sqrt 3 - i{\rm{][}}\sqrt 3 + i - \sqrt 3 + i{\rm{]}} \cr
& {\rm{ = 4}}\sqrt 3 i \cr} \)
b)
\({(\sqrt 3 + i)^2} + {(\sqrt 3 - i)^2} = 2 + 2\sqrt 3 i + 2 - 2\sqrt 3 i = 4\)
c)
\(\eqalign{
& {(\sqrt 3 + i)^2} - {(\sqrt 3 - i)^2} = {\rm{[}}\sqrt 3 + i - \sqrt 3 + i{\rm{][}}{(\sqrt 3 + i)^2} + {(\sqrt 3 )^2} - {i^2} + {(\sqrt 3 - i)^2}{\rm{]}} \cr
& = 2i(4 + 4) = 16i \cr} \)
d) \({{{{(\sqrt 3 + i)}^2}} \over {{{(\sqrt 3 - i)}^2}}} = {{2 + 2\sqrt 3 i} \over {2 - 2\sqrt 3 i}} = {{1 + \sqrt 3 i} \over {1 - \sqrt 3 i}} = {{ - 1 + \sqrt 3 i} \over 2}\)
dayhoctot.com
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học