Giải bài 33 trang 104 SGK Hình học 12 Nâng cao
Cho đường thẳng và mp(P) có phương trình: a) Xác định tọa độ giao điểm A của và (P). b) Viết phương trình đường thẳng đi qua A, nằm trong (P) và vuông góc với .
- Bài học cùng chủ đề:
- Bài 34 trang 104 SGK Hình học 12 Nâng cao
- Bài 35 SGK trang 104 Hình học 12 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 33. Cho đường thẳng \(\Delta \) và mp(P) có phương trình:
\(\Delta :{{x - 1} \over 1} = {{y - 2} \over 2} = {{z - 3} \over 2}\,\,;\,\,\left( P \right):2x + z - 5 = 0\).
a) Xác định tọa độ giao điểm A của \(\Delta \) và (P).
b) Viết phương trình đường thẳng đi qua A, nằm trong (P) và vuông góc với \(\Delta \).
Giải
a) Phương trình tham số của \(\Delta \) là:
\(\left\{ \matrix{
x = 1 + t \hfill \cr
y = 2 + 2t \hfill \cr
z = 3 + 2t \hfill \cr} \right.\).
Thay x, y, z vào phương trình của mp(P) ta được:
\(2\left( {1 + t} \right) + 3 + 2t - 5 = 0 \Leftrightarrow t = 0\).
Vậy giao điểm của \(\Delta \) và mp(P) là A(1; 2; 3).
b) Gọi d là đường thẳng đi qua A nằm trong (P) và vuông góc với \(\Delta \). Vectơ chỉ phương \(\overrightarrow {u'} \) của d phải vuông góc với chỉ phương \(\overrightarrow u = \left( {1;2;2} \right)\) của \(\Delta \) đồng thời vuông góc với cả vectơ pháp tuyến \(\overrightarrow n = \left( {2;0;1} \right)\) của (P) nên ta chọn \(\overrightarrow {u'} = \left[ {\overrightarrow u ,\overrightarrow n } \right] = \left( {2;3; - 4} \right)\).
Vậy d có phương trình tham số là
\(\left\{ \matrix{
x = 1 + 2t \hfill \cr
y = 2 + 3t \hfill \cr
z = 3 - 4t \hfill \cr} \right.\)
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học