Giải bài 1 trang 122 SGK Hình học 12 Nâng cao
Cho hình lăng trụ ABC.A’B’C’ với cạnh bên không vuông góc với mặt đáy. Gọi là mặt phẳng vuông góc với các cạnh bên của hình lăng trụ và cắt chúng tại P, Q, R. Phép tịnh tiến theo vectơ biến tam giác PQR thành tam giác P’Q’R’. a) Chứng minh rằng thể tích V của hình lăng trụ đã cho bằng thể tích của hình lăng trụ PQR.P’Q’R’. b) Chứng minh rằng , trong đó là diện tích tam giác PQR.
- Bài học cùng chủ đề:
- Bài 2 trang 122 SGK Hình học 12 Nâng cao
- Bài 3 trang 122 SGK Hình học 12 Nâng cao
- Bài 4 trang 122 SGK Hình học 12 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 1. Cho hình lăng trụ ABC.A’B’C’ với cạnh bên không vuông góc với mặt đáy. Gọi \(\left( \alpha \right)\) là mặt phẳng vuông góc với các cạnh bên của hình lăng trụ và cắt chúng tại P, Q, R. Phép tịnh tiến theo vectơ \(\overrightarrow {AA'} \) biến tam giác PQR thành tam giác P’Q’R’.
a) Chứng minh rằng thể tích V của hình lăng trụ đã cho bằng thể tích của hình lăng trụ PQR.P’Q’R’.
b) Chứng minh rằng \(V = {S_{PQR}}.AA'\), trong đó \({S_{PQR}}\) là diện tích tam giác PQR.
Giải
a) Mp(PQR) chia khối lăng trụ ABC.A’B’C’ thành 2 khối đa diện \({H_1}\) và \({H_2}\) với \({H_1}\) chứa \(\Delta ABC\), \({H_2}\) chứa \(\Delta A'B'C'\) Mp(A’B’C’) chia khối lăng trụ PQR.P’Q’R’ thành hai khối đa diện \({H_2}\) và \({H_3}\) với \({H_3}\) chứa \(\Delta P'Q'R'.\)
Gọi \({V_1},{V_2},{V_3}\) lần lượt là thể tích của các khối đa diện \({H_1},{H_2},{H_3}\) ta có:
\({V_{ABC.A'B'C'}} = {V_1} + {V_2},{V_{PQR.P'Q'R'}} = {V_2} + {V_3}.\)
Phép tịnh tiến \(\overrightarrow {AA'} :\)
\(\eqalign{
& {T_{\overrightarrow {AA'} }}:\Delta ABC \to \Delta A'B'C' \cr
& {T_{\overrightarrow {AA'} }}:\Delta PQR \to \Delta P'Q'R' \cr} \)
Suy ra \({T_{\overrightarrow {AA'} }}:{H_1} \to {H_3}\) do đó \({V_1} = {V_3}.\)
Vậy \({V_{ABC.A'B'C'}} = {V_{PQR.P'Q'R'}}.\)
b) Vì lăng trụ PQR.P’Q’R’ là lăng trụ đứng nên có chiều cao PP’ = AA’ nên
\({V_{ABC.A'B'C'}} = {V_{PQR.P'Q'R'}} = {S_{PQR}}.AA'.\)
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học