Giải bài 1 Trang 141 SGK Đại số và Giải tích 12 Nâng cao

Tìm nguyên hàm của các hàm số sau:

Bài 1. Tìm nguyên hàm của các hàm số sau :

a) \(f\left( x \right) = 3{x^2} + {x \over 2};\)             

b) \(f\left( x \right) = 2{x^3} - 5x + 7;\)

c) \(f\left( x \right) = {1 \over {{x^2}}} - {x^2} - {1 \over 3};\)

d) \(f\left( x \right) = {x^{ - {1 \over 3}}};\)

e) \(f\left( x \right) = {10^{2x}}.\)

Giải

Áp dụng công thức : \(\int {{x^\alpha }} dx = {{{x^{\alpha  + 1}}} \over {\alpha  + 1}} + C\left( {\alpha  \ne  - 1} \right)\)

a) \(\int {\left( {3{x^2} + {x \over 2}} \right)} dx = 3\int {{x^2}dx + {1 \over 2}\int {xdx = {x^3} + {{{x^2}} \over 4} + C} } \)

b) \(\int {\left( {2{x^3} - 5x + 7} \right)} dx = 2\int {{x^3}dx - 5\int {xdx + 7\int {dx = {{{x^4}} \over 2} - {{5{x^2}} \over 2} + 7x + C} } } \)

c) \(\int {\left( {{1 \over {{x^2}}} - {x^2} - {1 \over 3}} \right)} dx = \int {{x^{ - 2}}dx - \int {{x^2}dx - {1 \over 3}} } \int {dx =  - {1 \over x}}  - {{{x^3}} \over 3} - {x \over 3} + C\)

d) \(\int {{x^{ - {1 \over 3}}}dx = {{{x^{{2 \over 3}}}} \over {{2 \over 3}}}}  + C = {3 \over 2}{x^{{2 \over 3}}} + C\)

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật