Giải bài tập trắc nghiệm khách quan chương II
Trong mỗi bài tập dưới dây, hãy chọn một phương án cho để được khẳng định đúng.
Trong mỗi bài tập dưới dây, hãy chọn một phương án cho để được khẳng định đúng.
Bài 98 trang 132 SGK giải tích 12 nâng cao
Giá trị biểu thức \({\log _2}36 - {\log _2}144\) bằng
(A) – 4 ; (B) 4 ;
(C) – 2 ; (D) 2.
Giải
\({\log _2}36 - {\log _2}144 = {\log _2}{{36} \over {144}} = {\log _2}{1 \over 4} = {\log _2}{2^{ - 2}} = - 2\)
Chọn (C).
Bài 99 trang 132 SGK giải tích 12 nâng cao
Biết \({\log _6}\sqrt a = 2\) thì \({\log _6}a\) bằng:
(A) 36 ; (B) 108 ;
(C) 6 ; (D) 4.
Giải
\({\log _6}\sqrt a = 2 \Leftrightarrow {\log _6}{a^{{1 \over 2}}} = 2 \Leftrightarrow {\log _6}a = 4\)
Chọn (D)
Bài 100 trang 132 SGK giải tích 12 nâng cao
Tập các số x thỏa mãn \({\log _{0,4}}\left( {x - 4} \right) + 1 \ge 0\) là:
\(\left( A \right)\,\left( {4; + \infty } \right)\) \(\left( B \right)\,\left( {4;6,5} \right)\)
\(\left( C \right)\,\left( { - \infty ;6,5} \right)\) \(\left( D \right)\,\left[ {6,5; + \infty } \right)\)
Giải
\(\eqalign{
& {\log _{0,4}}\left( {x - 4} \right) + 1 \ge 0 \Leftrightarrow {\log _{0,4}}\left( {x - 4} \right) \ge - 1 \cr
& \Leftrightarrow 0 < x - 4 \le {\left( {0,4} \right)^{ - 1}} = {5 \over 2} \Leftrightarrow 4 < x \le {{13} \over 2} \cr} \)
Vậy \(S = \left( {4;6,5} \right]\). Chọn (B).
Bài 101 trang 132 SGK giải tích 12 nâng cao
Tập các số x thỏa mãn \({\left( {{2 \over 3}} \right)^{4x}} \le {\left( {{3 \over 2}} \right)^{2 - x}}\) là:
\(\left( A \right)\left( { - \infty ;{2 \over 3}} \right]\) \(\left( B \right)\,\left[ { - {2 \over 3}; + \infty } \right)\)
\(\left( C \right)\,\left( { - \infty ;{2 \over 5}} \right]\) \(\left( D \right)\,\left[ {{2 \over 5}; + \infty } \right)\)
Giải
\(\eqalign{
& {\left( {{2 \over 3}} \right)^{4x}} \le {\left( {{3 \over 2}} \right)^{2 - x}} \Leftrightarrow {\left( {{3 \over 2}} \right)^{ - 4x}} \le {\left( {{3 \over 2}} \right)^{2 - x}} \cr
& \Leftrightarrow - 4x \le 2 - x \Leftrightarrow x \ge - {2 \over 3} \cr} \)
Vậy \(S = \left[ { - {2 \over 3}; + \infty } \right)\). Chọn (B).
Bài 102 trang 133 SGK giải tích 12 nâng cao
Giá trị biểu thức \(3{\log _{0,1}}{10^{2,4}}\) bằng:
(A) 0,8; (B) 7,2;
(C) – 7,2; (D) 72.
Giải
\(3{\log _{0,1}}{10^{2,4}} = 3.2,4{\log _{0,1}}10 = - 7,2\). Chọn (C)
Bài 103 trang 133 SGK giải tích 12 nâng cao
Giá trị biểu thức \(0,5{\log _2}25 + {\log _2}\left( {1,6} \right)\) bằng:
(A) 1; (B) 2;
(C) 3; (D) 5.
Giải
\(\left( {0,5} \right){\log _2}25 + {\log _2}\left( {1,6} \right) = {\log _2}\left( {5.1,6} \right) = {\log _2}8 = 3\)
Chọn (C)
Bài 104 trang 133 SGK giải tích 12 nâng cao
Giá trị biểu thức \({{lo{g_2}240} \over {{{\log }_{3,75}}2}} - {{{{\log }_2}15} \over {{{\log }_{60}}2}} + {\log _2}1\) bằng:
(A) 4; (B) 3;
(C) 1; (D) – 8.
Giải
\(\eqalign{
& {{lo{g_2}240} \over {{{\log }_{3,75}}2}} - {{{{\log }_2}15} \over {{{\log }_{60}}2}} + {\log _2}1 = {lo{g_2}240}.{\log _2}3,75 - {\log _2}15.{\log _2}\left( {15.4} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {{{\log }_2}15 + 4} \right){\log _2}{{15} \over 4} - {\log _2}15\left( {{{\log }_2}15 + 2} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {{{\log }_2}15 + 4} \right)\left( {{{\log }_2}15 - 2} \right) - {\log _2}15\left( {{{\log }_2}15 + 2} \right) = - 8 \cr} \)
Chọn (D).
Bài 105 trang 133 SGK giải tích 12 nâng cao
Tập các số x thỏa mãn \({\left( {{3 \over 5}} \right)^{2x - 1}} \le {\left( {{3 \over 5}} \right)^{2 - x}}\) là:
\(\left( A \right)\,\left[ {3; + \infty } \right)\) \(\left( B \right)\,\left( { - \infty ;1} \right]\)
\(\left( C \right)\,\left[ {1; + \infty } \right)\) \(\left( D \right)\,\,\left( { - \infty ; + \infty } \right)\)
Giải
\(2x-1\ge2-x\Leftrightarrow 3x\ge 3\Leftrightarrow x\ge1\)
Vậy \(S = \left[ {1; + \infty } \right)\). Chọn (C).
Bài 106 trang 133 SGK giải tích 12 nâng cao
Đối với hàm số \(f\left( x \right) = {e^{\cos 2x}}\), ta có:
\(\eqalign{
& \left( A \right)\,f'\left( {{\pi \over 6}} \right) = {e^{{{\sqrt 3 } \over 2}}}; \cr
& \left( C \right)\,f'\left( {{\pi \over 6}} \right) = \sqrt {3e} \cr} \)
\(\eqalign{
& \left( B \right)\,f'\left( {{\pi \over 6}} \right) - {e^{{{\sqrt 3 } \over 2}}}; \cr
& \left( D \right)\,f'\left( {{\pi \over 6}} \right) = - \sqrt {3e} \cr} \)
Giải
\(f'\left( x \right) = - 2\sin 2x{e^{\cos 2x}};\,f\left( {{\pi \over 6}} \right) = - 2\sin {\pi \over 3}.{e^{\cos {\pi \over 3}}} = - \sqrt 3 .{e^{{1 \over 2}}} = - \sqrt {3e} \)
Chọn (D).
Bài 107 trang 133 SGK giải tích 12 nâng cao
Đối với hàm số \(y = \ln {1 \over {x + 1}}\), ta có:
\(\eqalign{
& \left( A \right)\,xy' + 1 = {e^y}; \cr
& \left( C \right)\,xy' - 1 = {e^y}; \cr} \)
\(\eqalign{
& \left( B \right)\,xy' + 1 = - {e^y}; \cr
& \left( D \right)\,xy' - 1 = - {e^y}. \cr} \)
Giải
\(\eqalign{
& y = - \ln \left( {x + 1} \right) \Rightarrow y' = - {1 \over {x + 1}} \cr
& \Rightarrow xy' + 1 = x.{{ - 1} \over {x + 1}} + 1 = {{ - x} \over {x + 1}} + 1 = {1 \over {x + 1}} = {e^y} \cr} \)
Chọn (A).
Bài 108 trang 134 SGK giải tích 12 nâng cao
Trên hình bên, đồ thị của ba hàm số: \(y = {a^x};\,y = {b^x};\,y = {c^x}\) (a, b và c là ba số dương khác 1 cho trước) được vẽ trong cùng một mặt phẳng tọa độ. Dựa vào đồ thị và các tính chất của lũy thừa, hãy so sánh ba số a, b và c.
\(\eqalign{
& \left( A \right)\,a > b > c; \cr
& \left( C \right)\,b > a > c; \cr} \)
\(\eqalign{
& \left( B \right)\,a > c > b; \cr
& \left( D \right)\,b > c > a. \cr} \)
Giải
Với x > 0 ta có \({a^x} > {c^x} > {b^x}\) do đó . Chọn (B).
Bài 109 trang 135 SGK giải tích 12 nâng cao
Trên hình bên, đồ thị của ba hàm số:
\(y = {\log _a}x,\,{\log _b}x,\,{\log _c}x\) (a,b và c là ba số dương khác 1 cho trước) được vẽ trong cũng một mặt phẳng tọa độ. Dựa vào đồ thị và các tính chất của logarit, hãy so sánh ba số a,b,c:
\(\eqalign{
& \left( A \right)\,a > b > c; \cr
& \left( C \right)\,b > a > c; \cr} \)
\(\eqalign{
& \left( B \right)\,c > a > b; \cr
& \left( C \right)\,c > b > a. \cr} \)
Giải
Dựa vào tính chất đơn điệu của hàm số ta có: \(a > 1,\,b > 1,\,c > 1\)
Với x > 1 ta có \({\log _a}x > {\log _b}x > 0 \Rightarrow {\log _x}a < {\log _a}b \Rightarrow a < b\)
Vậy \(c < a < b\). Chọn (C).
Bài 110 trang 135 SGK giải tích 12 nâng cao
Phương trình \({\log _2}4x - {\log _{{x \over 2}}}2 = 3\) có bao nhiêu nghiệm?
(A) 1 nghiệm (B) 2 nghiệm
(C) 3 nghiệm (D) 4 nghiệm.
Giải
Điều kiện: \(x > 0,\,x \ne 2\)
\(\eqalign{
& {\log _2}4x - {\log _{{x \over 2}}}2 = 3 \Leftrightarrow 2 + {\log _2}x - {1 \over {{{\log }_2}{x \over 2}}} = 3 \cr
& \Leftrightarrow {\log _2}x - {1 \over {{{\log }_2}x - 1}} = 1 \Leftrightarrow \log _2^2x - {\log _2}x - 1 = {\log _2}x - 1 \cr
& \Leftrightarrow \log _2^2x - 2{\log _2}x = 0 \cr
& \Leftrightarrow \left[ \matrix{
{\log _2}x = 0 \hfill \cr
{\log _2}x = 2 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr
x = 4 \hfill \cr} \right. \cr} \)
Phương trinh có 2 nghiệm. Chọn (B).
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học