Giải bài 8 trang 147 SGK Giải tích 12
Giải bài 8 trang 147 SGK Giải tích 12. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
- Bài học cùng chủ đề:
- Bài 9 trang 147 SGK Giải tích 12
- Bài 10 trang 147 SGK Giải tích 12
- Bài 11 trang 147 SGK Giải tích 12
- Ngữ pháp tiếng anh hay nhất
Đề bài
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
a) \(f(x) = 2x^3– 3x^2– 12x + 1\) trên đoạn \(\left[ { - 2 ; \, {5 \over 2}} \right].\)
b) \( f(x) = x^2lnx\) trên đoạn \(\left[ {1; \, e} \right].\)
c) \(f(x) = xe^{-x}\) trên nửa khoảng \([0; \, +∞).\)
d) \(f(x) = 2sinx + sin2x\) trên đoạn \(\left[ {0; \,{{3\pi } \over 2}} \right].\)
Phương pháp giải - Xem chi tiết
Để tìm GTLN, GTNN của hàm số \(y=f\left( x \right)\) trên đoạn \(\left[ a;\ b \right]\) ta làm như sau :
+) Tìm các điểm \({{x}_{1}};\ {{x}_{2}};\ {{x}_{3}};......;\ {{x}_{n}}\) thuộc đoạn \(\left[ a;\ b \right]\) mà tại đó hàm số có đạo hàm \(f'\left( x \right)=0\) hoặc không có đạo hàm.
+) Tính \(f\left( {{x}_{1}} \right);\ \ f\left( {{x}_{2}} \right);\ \ f\left( {{x}_{3}} \right);........;\ \ f\left( {{x}_{n}} \right)\) và \(f\left( a \right);\ f\left( b \right).\)
+) So sánh các giá trị tìm được ở trên. Giá trị lớn nhất trong các giá trị đó chính là GTLN của hàm số \(y=f\left( x \right)\) trên \(\left[ a;\ b \right]\) và giá trị nhỏ nhất trong các giá trị đó chính là GTNN của hàm số \(y=f\left( x \right)\) trên \(\left[ a;\ b \right]\).
\(\begin{align}& \underset{x\in \left[ a;\ b \right]}{\mathop{\max }}\,f\left( x \right)=\max \left\{ f\left( {{x}_{1}} \right);\ f\left( {{x}_{2}} \right);.......;\ f\left( {{x}_{m}} \right);\ f\left( a \right);\ f\left( b \right) \right\}. \\ & \underset{x\in \left[ a;\ b \right]}{\mathop{\min }}\,f\left( x \right)=\min \left\{ f\left( {{x}_{1}} \right);\ f\left( {{x}_{2}} \right);.......;\ f\left( {{x}_{m}} \right);\ f\left( a \right);\ f\left( b \right) \right\}. \\ \end{align}\)
Lời giải chi tiết
a) \(f(x) = 2x^3– 3x^2– 12x + 1 ⇒ f’(x) = 6x^2 – 6x – 12\)
\(f’(x) = 0 ⇔ x =-1\) hoặc \(x=2\)
So sánh các giá trị:
\(f(-2) = -3\); \( f(-1) = 8\);
\(f(2) = -19\), \(f({5 \over 2}) = {{ - 33} \over 2}\)
Suy ra:
\(\eqalign{
& \mathop {\max }\limits_{x \in \left[ { - 2,{5 \over 2}} \right]} f(x) = f( - 1) = 8 \cr
& \mathop {min}\limits_{x \in \left[ { - 2,{5 \over 2}} \right]} f(x) = f(2) = - 19 \cr} \)
b) \(f(x) = x^2 lnx ⇒ f’(x)= 2xlnx + x > 0, ∀ x ∈ [1, e]\) nên \(f(x)\) đồng biến.
Do đó:
\(\eqalign{
& \mathop {\max }\limits_{x \in \left[ {1,e} \right]} f(x) = f(e) = {e^2} \cr
& \mathop {min}\limits_{x \in \left[ {1,e} \right]} f(x) = f(1) = 0 \cr} \)
c) \(f(x)= xe^{-x}⇒ f’(x)=e^{-x} –xe^{-x} = (1 – x)e^{-x}\) nên:
\(f’(x) = 0 ⇔ x = 1, f’(x) > 0, ∀x ∈ (0, 1)\) và \(f’(x) < 0, ∀x ∈ (1, +∞)\)
nên: \(\mathop {\max }\limits_{x \in {\rm{[}}0, + \infty )} f(x) = f(1) = {1 \over e}.\)
Ngoài ra \(f(x)= xe^{-x} > 0, ∀ x ∈ (0, +∞)\) và \(f(0) = 0\) suy ra
\(\mathop {\min}\limits_{x \in {\rm{[}}0, + \infty )} f(x) = f(0) = 0\)
d) \(f(x) = 2sinx + sin2x ⇒ f’(x)= 2cosx + 2cos2x\)
\(f’(x) = 0 ⇔ cos 2x = -cosx ⇔ 2x = ± (π – x) + k2π\)
\( ⇔ x \in \left\{ { - \pi + k2\pi ;{\pi \over 3} + {{k2\pi } \over 3}} \right\}\)
Trong khoảng \(\left[ {0,{{3\pi } \over 2}} \right]\) , phương trình \(f’(x) = 0\) chỉ có hai nghiệm là \({x_1} = {\pi \over 3};{x_2} = \pi \)
So sánh bốn giá trị : \(f(0) = 0\); \(f({\pi \over 3}) = {{3\sqrt 3 } \over 2};f(\pi ) = 0;f({{3\pi } \over 2}) = - 2\)
Suy ra:
\(\eqalign{
& \mathop {\max }\limits_{x \in \left[ {0,{{3\pi } \over 2}} \right]} f(x) = f({\pi \over 3}) = {{3\sqrt 3 } \over 2} \cr
& \mathop {min}\limits_{x \in \left[ {0,{{3\pi } \over 2}} \right]} f(x) = f({{3\pi } \over 2}) = - 2 \cr} \)