Giải bài 48 trang 45 SGK giải tích 12 nâng cao

Cho hàm số: a) Tìm các giá trị của m sao cho hàm số có ba cực trị. b) Kháo sát sự biến thiên và vẽ đồ thị của hàm số với . Viết phương trình tiếp tuyến của đồ thị tại hai điểm uốn.

Bài 48. Cho hàm số: \(y = {x^4} - 2m{x^2} + 2m\)
a) Tìm các giá trị của \(m\) sao cho hàm số có ba cực trị.
b) Kháo sát sự biến thiên và vẽ đồ thị của hàm số với \(m = {1 \over 2}\). Viết phương trình tiếp tuyến của đồ thị tại hai điểm uốn.

Giải

a) TXĐ: \(D =\mathbb R\)

\(y = 4{x^3} - 4mx = 4x\left( {{x^2} - m} \right);\,y' = 0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
{x^2} = m \hfill \cr} \right.\)

Nếu \(m> 0\) thì \(y’=0\) \( \Leftrightarrow x = 0\) hoặc \(x =  - \sqrt m \) hoặc \(x = \sqrt m \)

Hàm số có ba điểm cực trị.
Nếu \(m \le 0\) thì \({x^2} - m \ge 0\) với mọi \(x \in\mathbb R\)

Hàm số có \(1\) cực tiểu.
Vậy hàm số có ba cực trị khi và chỉ khi \(m>0\).
b) Với \(m = {1 \over 2}\) ta có \(y = {x^4} - {x^2} + 1\)
TXĐ: \(D =\mathbb R\)

\(\eqalign{
& \mathop {\lim }\limits_{x \to \pm \infty } y = + \infty \cr
& y' = 4{x^3} - 2x = 2x\left( {2{x^2} - 1} \right);\,y' = 0 \Leftrightarrow \left[ \matrix{
x = 0;\,\,\,\,y\left( 0 \right) = 1 \hfill \cr
x = \pm \sqrt {{1 \over 2}} ;\,\,y\left( { \pm \sqrt {{1 \over 2}} } \right) = {3 \over 4} \hfill \cr} \right. \cr} \)

\(y'' = 12{x^2} - 2;\,y'' = 0 \Leftrightarrow x =  \pm {{\sqrt 6 } \over 6};\,\,y\left( { \pm {{\sqrt 6 } \over 6}} \right) = {{31} \over {36}}\)

Xét dấu y”

Đồ thị có hai điểm uốn: \({I_1}\left( { - {{\sqrt 6 } \over 6};{{31} \over {36}}} \right)\) và \({I_2}\left( {{{\sqrt 6 } \over 6};{{31} \over {36}}} \right)\)
Điểm đặc biệt: \(x =  \pm 1 \Rightarrow y = 1\)


Đồ thị: Đồ thị nhận trục tung làm trục đối xứng.

+ Phương trình tiếp tuyến tại  \({I_1}\left( { - {{\sqrt 6 } \over 6};{{31} \over {36}}} \right)\) là \(y - {{31} \over {36}} = y'\left( { - {{\sqrt 6 } \over 6}} \right)\left( {x + {{\sqrt 6 } \over 6}} \right)\)

\( \Leftrightarrow y = {4 \over {3\sqrt 6 }}x + {{13} \over {12}}\)

+ Tương tự phương trình tiếp tuyến tại \({I_2}\left( {{{\sqrt 6 } \over 6};{{31} \over {36}}} \right)\) là: \(y =  - {4 \over {3\sqrt 6 }}x + {{13} \over {12}}\)

Các bài học liên quan
Bài 53 trang 62 SGK  giải tích 12 nâng cao
Bài 55 trang 62 SGK  giải tích 12 nâng cao
Bài 57 trang 55 SGK  giải tích 12 nâng cao
Bài 58 trang 56 SGK  giải tích 12 nâng cao

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật