Giải bài 15 trang 17 SGK Đại số và Giải tích 12 Nâng cao
Chứng minh rằng với mọi giá trị của m, hàm số luôn có cực đại và cực tiểu
Bài 15. Chứng minh rằng với mọi giá trị của \(m\), hàm số: \(y = {{{x^2} - m\left( {m + 1} \right)x + {m^3} + 1} \over {x - m}}\) luôn có cực đại và cực tiểu
Giải
TXĐ: \(D = {\mathbb{R}}\backslash \left\{ m \right\}\)
\(\eqalign{
& y' = {{\left[ {2x - m\left( {m + 1} \right)} \right]\left( {x - m} \right) - \left[ {{x^2} - m\left( {m + 1} \right)x + {m^3} + 1} \right]} \over {{{\left( {x - m} \right)}^2}}} \cr
& \,\,\,\,\, = {{{x^2} - 2mx + {m^2} - 1} \over {{{\left( {x - m} \right)}^2}}},x \ne m \cr} \)
\(\eqalign{
& y' = 0 \Leftrightarrow {x^2} - 2mx + {m^2} - 1 = 0 \Leftrightarrow {\left( {x - m} \right)^2} = 1 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \left[ \matrix{
x = m - 1;f\left( {m - 1} \right) = - {m^2} + m - 2 \hfill \cr
x = m + 1;f\left( {m + 1} \right) = - {m^2} + m + 2 \hfill \cr} \right. \cr} \)
Với mọi giá trị của \(m\), hàm số đạt cực đại tại điểm \(x=m-1\) và đạt cực tiểu tại điểm \(x=m+1\)
dayhoctot.com
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học