Giải bài 25 trang 23 SGK Đại số và Giải tích 12 Nâng cao
Một con cá hồi bơi ngược dòng để vượt một khoảng cách là 300km. Vận tốc dòng nước là 6 km/h. Nếu vận tốc bơi của con cá khi nước đứng yên là v (km/h) thì năng lượng tiêu hao của con cá trong t giờ được cho bởi công thức, trong đó c là một hằng số, E được tính bằng jun. Tìm vận tốc bơi của cá khi nước đứng yên để năng lượng tiêu hao là ít nhất.
- Bài học cùng chủ đề:
- Bài 26 trang 23 SGK Đại số và Giải tích 12 Nâng cao
- Bài 27 trang 24 SGK Đại số và Giải tích 12 Nâng cao
- Bài 28 trang 24 SGK Đại số và Giải tích 12 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 25. Một con cá hồi bơi ngược dòng để vượt một khoảng cách là \(300km\). Vận tốc dòng nước là \(6 km/h\). Nếu vận tốc bơi của con cá khi nước đứng yên là \(v (km/h)\) thì năng lượng tiêu hao của con cá trong \(t\) giờ được cho bởi công thức \(E\left( v \right) = c{v^3}t\), trong đó \(c\) là một hằng số, \(E\) được tính bằng jun. Tìm vận tốc bơi của cá khi nước đứng yên để năng lượng tiêu hao là ít nhất.
Giải
Vận tốc của cá hồi khi bơi ngược là \(v – 6 (km/h)\). Thời gian cá bơi để vượt khoảng cách \(300 km\) là: \(t = {{300} \over {v- 6}}\,\,\left( h \right)\)
Năng lượng tiêu hao của cá để vượt khoảng cách đó là:\(E\left( v \right) = c{v^3}.{{300} \over {v - 6}} = 300c.{{{v^3}} \over {v - 6}}\) (jun) với \(v>6\).
Đạo hàm \(E'\left( v \right) = 300c.{{3{v^2}\left( {v - 6} \right) - {v^3}} \over {{{\left( {v - 6} \right)}^2}}} = 300c.{{2{v^3} - 18v} \over {{{\left( {v - 6} \right)}^2}}} = 600c.{{{v^2}\left( {v - 9} \right)} \over {{{\left( {v - 6} \right)}^2}}}\)
Năng lượng cực tiểu khi: \(E'\left( v \right) = 0 \Leftrightarrow v = 9\)( vì \(v>6)\)
\(E\left( 9 \right) = 72900c\)
Bảng biến thiên:
Để ít tiêu hao năng lượng nhất, cá phải bơi với vận tốc ( khi nước đứng yên) là \(9 (km/h)\).
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học