Giải bài 21 trang 22 SGK Đại số và Giải tích 12 Nâng cao

Tìm cực trị của các hàm số sau:

Bài 21. Tìm cực trị của các hàm số sau:

a) \(f\left( x \right) = {x \over {{x^2} + 1}};\)                    b) \(f\left( x \right) = {{{x^3}} \over {x + 1}};\)

c) \(f\left( x \right) = \sqrt {5 - {x^2}} ;\)              d) \(f\left( x \right) = x + \sqrt {{x^2} - 1} \).

Giải

a) TXĐ: \(D = {\mathbb{R}}\)

\(f'\left( x \right) = {{{x^2} + 1 - 2{x^2}} \over {{{\left( {{x^2} + 1} \right)}^2}}} = {{1 - {x^2}} \over {{{\left( {{x^2} + 1} \right)}^2}}};f'\left( x \right) = 0 \Leftrightarrow \left[ \matrix{
x = 1\,\,\,\,\,\,f\left( 1 \right) = {1 \over 2} \hfill \cr
x = - 1\,\,\,f\left( { - 1} \right) = - {1 \over 2} \hfill \cr} \right.\)

Hàm số đạt cực tiểu tại điểm \(x=-1\), giá trị cực tiểu \(f\left( { - 1} \right) =  - {1 \over 2}\). Hàm số đạt cực đại tại điểm \(x=1\), giá trị cực đại \(f\left( 1 \right) = {1 \over 2}\).

b) TXĐ: \(D = {\mathbb {R}}\backslash \left\{ { - 1} \right\}\)

\(\eqalign{
& f'\left( x \right) = {{3{x^2}\left( {x + 1} \right) - {x^3}} \over {{{\left( {x + 1} \right)}^2}}} = {{2{x^3} + 3{x^2}} \over {{{\left( {x + 1} \right)}^2}}} \cr
& f'\left( x \right) = 0 \Leftrightarrow {x^2}\left( {2x + 3} \right) = 0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = - {3 \over 2} \hfill \cr} \right. \cr
& f\left( { - {3 \over 2}} \right) = {{27} \over 4} \cr} \)

Hàm số đạt cực tiểu tại điểm \(x =  - {3 \over 2}\), giá trị cực tiểu \(f\left( { - {3 \over 2}} \right) = {{27} \over 4}\).

c) TXĐ: \(D = \left[ { - \sqrt 5 ;\sqrt 5 } \right]\)

\(f'\left( x \right) = {{ - 2x} \over {2\sqrt {5 - {x^2}} }} = {{ - x} \over {\sqrt {5 - {x^2}} }};f'\left( x \right) = 0 \Leftrightarrow x = 0;f\left( 0 \right) = \sqrt 5 \)

Hàm số đạt cực đại tại \(x=0\), giá trị cực đại \(f\left( 0 \right) = \sqrt 5 \).

d) \(f\left( x \right)\) xác định khi và chỉ khi \({x^2} - 1 \ge 0\) \( \Leftrightarrow x \le  - 1\)hoặc \(x \ge 1\).

TXĐ: \(D = \left( { - \infty ; - 1} \right] \cup \left[ {1; + \infty } \right)\)

\(f'\left( x \right) = 1 + {x \over {\sqrt {{x^2} - 1} }} = {{\sqrt {{x^2} - 1}  + x} \over {\sqrt {{x^2} - 1} }}\) 

\(f'\left( x \right) = 0 \Leftrightarrow \sqrt {{x^2} - 1} = - x \Leftrightarrow \left\{ \matrix{
x \le 0 \hfill \cr
{x^2} - 1 = {x^2} \hfill \cr} \right.\) vô nghiệm

\(f'\left( { - 2} \right) < 0 \Rightarrow f'\left( x \right) < 0\) với mọi \(x <  - 1\)

\(f'\left( { - 2} \right) > 0 \Rightarrow f'\left( x \right) > 2\) với mọi \(x > 1\)

Hàm số nghịch biến trên \(\left( { - \infty ; - 1} \right]\) và đồng biến trên \(\left[ {1; + \infty } \right)\).

Hàm số không có cực trị.

Các bài học liên quan
Bài 25 trang 23 SGK Đại số và Giải tích 12 Nâng cao
Bài 26 trang 23  SGK Đại số và Giải tích 12 Nâng cao
Bài 30 trang 27 SGK Đại số và Giải tích 12 Nâng cao
Bài 31 trang 27 SGK Đại số và Giải tích 12 Nâng cao

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật