Giải câu 4 trang 99 SGK Hình học 10

Cho tam giác ABC đều có cạnh bằng 6cm. Một điểm M nằm trên cạnh BC sao cho BM = 2cm

Bài 4. Cho tam giác \(ABC\) đều có cạnh bằng \(6cm\). Một điểm \(M\) nằm trên cạnh \(BC\) sao cho \(BM  = 2cm\)

a) Tính độ dài của đoạn thẳng \(AM\) và tính cosin của góc \(BAM\)

b) Tính bán kính đường tròn ngoại tiếp tam giác \(ABC\)

c) Tính độ dài đường trung tuyến vẽ từ \(C\) của tam giác \(ACM\)

d) Tính diện tích tam giác \(ABM\)

Trả lời:

 

a) Ta có:

\(\eqalign{
& A{M^2} = B{A^2} + B{M^2} - 2BA.BM.\cos\widehat {ABM} \cr
& \Rightarrow A{M^2} = 36 + 4 - 2.6.2.{1 \over 2} \cr
& \Rightarrow A{M^2} = 28 \Rightarrow AM = 2\sqrt 7 (cm) \cr} \)

Ta cũng có:

\(\eqalign{
& \cos \widehat {BAM }= {{A{B^2} + A{M^2} - B{M^2}} \over {2AB.AM}} \cr
& \Rightarrow \cos\widehat { BAM }= {{5\sqrt 7 } \over {14}} \cr} \)

b) Trong tam giác \(ABM\), theo định lí Sin ta có:

\(\eqalign{
& {{AM} \over {\sin \widehat {ABM}}} = 2R \Leftrightarrow R = {{AM} \over {2\sin \widehat {ABM}}} \cr
& R = {{2\sqrt 7 } \over {2\sin {{60}^0}}} = {{2\sqrt {21} } \over 3}(cm) \cr} \)

c) Áp dụng công thức đường trung tuyến ta có:

\(\eqalign{
& C{P^2} = {{C{A^2} + C{M^2}} \over 2} - {{A{M^2}} \over 4} \cr
& \Rightarrow C{P^2} = {{36 + 16} \over 2} - {{28} \over 4} \cr
& \Rightarrow C{P^2} = 19 \Rightarrow CP = \sqrt {19} \cr}\)

d) Diện tích tam giác \(ABM\) là:

\(S = {1 \over 2}BA.BM\sin \widehat {ABM} = {1 \over 2}6.2\sin {60^0} = 3\sqrt 3 (c{m^2})\)

Các bài học liên quan
Câu 9 trang 99 SGK Hình học 10
Lý thuyết về mệnh đề
Các chương học và chủ đề lớn

Bài học nổi bật nhất

Đề thi lớp 10 mới cập nhật