Giải câu 9 trang 99 SGK Hình học 10

Qua tiêu điểm của elip dựng đường thẳng song song với Oy và cắt elip tại hai điểm M và N. Tính độ dài đoạn thẳng MN.

Bài 9. Cho elip \((E)\) có phương trình: \({{{x^2}} \over {100}} + {{{y^2}} \over {36}} = 1\)

a) Hãy xác định tọa độ các đỉnh, các tiêu điểm của elip \((E)\) và vẽ elip đó

b) Qua  tiêu điểm của elip dựng đường thẳng song song với \(Oy\) và cắt elip tại hai điểm \(M\) và \(N\). Tính độ dài đoạn thẳng \(MN\).

Trả lời:

 

a) Ta có: \(a^2= 100 ⇒ a = 10\)

              \(b^2= 36 ⇒ b = 6\)

              \(c^2= a^2– b^2= 64 ⇒ c = 8\)

Từ đó ta được: \(A_1(-10; 0), A_2(10; 0), B_1(0; -3), B_2(0;3), F_1(-8; 0), F_2(8; 0)\)

b) Thế \(x = 8\) vào phương  trình của elip ta được:

 \({{64} \over {100}} + {{{y^2}} \over {36}} = 1 \Rightarrow y =  \pm {{18} \over 5}\)

Ta có: \({F_2}M = {{18} \over 5} \Rightarrow MN = {{36} \over 5}\)

                                                                               

            

Các bài học liên quan
Lý thuyết hàm số y = ax + b
Các chương học và chủ đề lớn

Bài học nổi bật nhất

Đề thi lớp 10 mới cập nhật