Giải bài 3 trang 90 SGK Hình học 12

Giải bài 3 trang 90 SGK Hình học 12. Xét vị trí tương đối của đường thẳng d và d' trong các trường hợp.

Đề bài

Xét vị trí tương đối của đường thẳng d và d' trong các trường hợp sau:

a) d: \(\left\{\begin{matrix} x=-3+2t & \\ y=-2+3t& \\ z=6+4t& \end{matrix}\right.\) và     d': \(\left\{\begin{matrix} x=5+t'& \\ y=-1-4t'& \\ z=20+t'& \end{matrix}\right.\) ;

b) d: \(\left\{\begin{matrix} x=1+t& \\ y=2+t& \\ z=3-t& \end{matrix}\right.\) và     d':  \(\left\{\begin{matrix} x=1+2t'& \\ y=-1+2t'& \\ z=2-2t'.& \end{matrix}\right.\)

Phương pháp giải - Xem chi tiết

Vị trí tương đối giữa hai đường thẳng d và d'. Gọi \(\overrightarrow a ;\,\overrightarrow {a'} \) lần lượt là VTCP của d và d', \({M_1} \in d,\,\,{M_2} \in d'\).

Điều kiện để hai đường thẳng d và d' song song: \(\left\{ \begin{array}{l}\overrightarrow a = k\overrightarrow {a'} \\M \in d,\,\,M \notin d'\end{array} \right.\,\).

Điều kiện để hai đường thẳng d và d' cắt nhau \(\left[ {\overrightarrow a ;\overrightarrow {a'} } \right].\overrightarrow {{M_1}{M_2}}  = 0\).

Điều kiện để hai đường thẳng d và d' chéo nhau: \(\left[ {\overrightarrow a ;\overrightarrow {a'} } \right].\overrightarrow {{M_1}{M_2}}  \ne 0\).

Lời giải chi tiết

a)  Đường thẳng \(d\) đi qua \(M_1( -3 ; -2 ; 6)\) và có vectơ chỉ phương \(\overrightarrow{u_{1}}(2 ; 3 ; 4)\).

Đường thẳng \(d'\) đi qua \(M_2( 5 ; -1 ; 20)\) và có vectơ chỉ phương \(\overrightarrow{u_{2}}(1 ; -4 ; 1)\).

Ta nhận thấy \(\overrightarrow{u_{1}}\), \(\overrightarrow{u_{2}}\) không cùng phương nên d và d' chỉ có thể cắt nhau hoặc chéo nhau.

Ta có   \(\left [\overrightarrow{u_{1}},\overrightarrow{u_{2}} \right ] = (19 ; 2 ; -11)\) ; \(\overrightarrow{M_{1}M_{2}} = (8 ; 1 ; 14) \)

và \(\left [\overrightarrow{u_{1}},\overrightarrow{u_{2}} \right ].\overrightarrow{M_{1}M_{2}} = (19.8 + 2 - 11.14) = 0\)

nên \(d\) và \(d'\) cắt nhau.

Xét hệ phương trình:\(\left\{\begin{matrix} -3+2t=5+t' & (1)\\ -2+3t=-1-4t' & (2) \\ 6+4t=20+t'& (3) \end{matrix}\right.\)

Từ (1) với (3), trừ vế với vế ta có \(2t = 6 => t = 3\), thay vào (1) có \(t' = -2\), từ đó \(d\) và \(d'\) có điểm chung duy nhất \(M(3 ; 7 ; 18)\). Do đó d và d' cắt nhau tại M.

b) Ta có : \(\overrightarrow{u_{1}}(1 ; 1 ; -1)\) là vectơ chỉ phương của d và \(\overrightarrow{u_{2}}(2 ; 2 ; -2)\) là vectơ chỉ phương của d' .

Ta thấy \(\overrightarrow{u_{1}}\) và \(\overrightarrow{u_{2}}\) cùng phương nên d và d' chỉ có thể song song hoặc trùng nhau.

Lấy điểm \(M(1 ; 2 ; 3) ∈d\) ta thấy \(M \notin d'\) nên \(d\) và \(d'\) song song.

Các bài học liên quan
Bài 7 trang 91 SGK Hình học 12
Bài 8 trang 91 SGK Hình học 12
Bài 10 trang 91 SGK Hình học 12
Các chương học và chủ đề lớn

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật