Giải bài 1 trang 51 SGK Hình học 12
Giải bài 1 trang 51 SGK Hình học 12. Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi S là diện tích xung quanh của hình trụ có hai đường tròn đáy ngoại tiếp hai hình vuông ABCD
- Bài học cùng chủ đề:
- Bài 2 trang 51 SGK Hình học 12
- Bài 3 trang 51 SGK Hình học 12
- Bài 4 trang 51 SGK Hình học 12
- Ngữ pháp tiếng anh hay nhất
Đề bài
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Gọi \(S\) là diện tích xung quanh của hình trụ có hai đường tròn đáy ngoại tiếp hai hình vuông \(ABCD\) và \(A'B'C'D'\). Diện tích \(S\) là:
(A) \(πa^2\); (B) \(πa^2\sqrt 2 \) ;
(C) \(πa^2\sqrt 3 \); (D) \({{\pi {{\rm{a}}^2}\sqrt 2 } \over 2}\).
Phương pháp giải - Xem chi tiết
Diện tích xung quanh của hình trụ \({S_{xq}} = 2\pi Rh\), trong đó \(R;h\) lần lượt là bán kính đáy và độ dài đường cao của hình trụ.
Hình trụ đã cho có đường cao bằng cạnh của hình lạp phương và bán kính đáy là bán kính đường tròn ngoại tiếp hình lập phương cạnh \(a\).
Lời giải chi tiết
Xét tam giác vuông ABC có: \(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \)
Hình trụ là hình ngoại tiếp hình vuông cạnh \(a\) nên có đường kính \( a\sqrt2\) đường cao của hình trụ là \(a\) \( \Rightarrow R = \frac{{a\sqrt 2 }}{2}\)
\( \Rightarrow {S_{xq}} = 2\pi Rh = 2\pi .\frac{{a\sqrt 2 }}{2}.a = \pi {a^2}\sqrt 2 \)
Chọn (B).