Giải bài 1 trang 51 SGK Hình học 12

Giải bài 1 trang 51 SGK Hình học 12. Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi S là diện tích xung quanh của hình trụ có hai đường tròn đáy ngoại tiếp hai hình vuông ABCD

Đề bài

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Gọi \(S\) là diện tích xung quanh của hình trụ có hai đường tròn đáy ngoại tiếp hai hình vuông \(ABCD\) và \(A'B'C'D'\). Diện tích \(S\) là:

(A) \(πa^2\);                                      (B) \(πa^2\sqrt 2 \) ;

(C) \(πa^2\sqrt 3 \);                                (D) \({{\pi {{\rm{a}}^2}\sqrt 2 } \over 2}\).

Phương pháp giải - Xem chi tiết

Diện tích xung quanh của hình trụ \({S_{xq}} = 2\pi Rh\), trong đó \(R;h\) lần lượt là bán kính đáy và độ dài đường cao của hình trụ.

Hình trụ đã cho có đường cao bằng cạnh của hình lạp phương và bán kính đáy là bán kính đường tròn ngoại tiếp hình lập phương cạnh \(a\).

Lời giải chi tiết

Xét tam giác vuông ABC có: \(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

Hình trụ là hình ngoại tiếp hình vuông cạnh \(a\) nên có đường kính \( a\sqrt2\) đường cao của hình trụ là \(a\) \( \Rightarrow R = \frac{{a\sqrt 2 }}{2}\)

\( \Rightarrow {S_{xq}} = 2\pi Rh = 2\pi .\frac{{a\sqrt 2 }}{2}.a = \pi {a^2}\sqrt 2 \)

Chọn (B).

Các bài học liên quan
Bài 6 trang 52 SGK Hình học 12
Bài 7 trang 52 SGK Hình học 12
Bài 8 trang 52 SGK Hình học 12
Bài 11 trang 53 SGK Hình học 12
Các chương học và chủ đề lớn

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật