Giải bài 3 trang 51 SGK Hình học 12

Giải bài 3 trang 51 SGK Hình học 12. Hình chóp S.ABC có đáy là tam giác ABC vuông tại A, có SA vuông góc với mặt phẳng (ABC) và có SA = a, AB = b, AC = c.

Đề bài

Hình chóp \(S.ABC\) có đáy là tam giác \(ABC\) vuông tại \(A\), có \(SA\) vuông góc với mặt phẳng \((ABC)\) và có \(SA = a, AB = b, AC = c\). Mặt cầu đi qua các đỉnh \(A, B, C, S\) có bán kính \(r\) bằng:

(A) \({{2(a + b + c)} \over 3}\) ;                                (B) 2\(\sqrt {{a^2} + {b^2} + {c^2}} \) ;

(C) \({1 \over 2}\sqrt {{a^2} + {b^2} + {c^2}} \) ;                (D) \(\sqrt {{a^2} + {b^2} + {c^2}} \) .

Phương pháp giải - Xem chi tiết

Phương pháp xác định tâm mặt cầu ngoại tiếp của khối chóp.

Bước 1: Xác định trục d của mặt đáy (trục là đường thẳng đi qua tâm đường tròn ngoại tiếp đáy và vuông góc với đáy).

Bước 2: Xác định mặt phẳng trung trực (P) của một cạnh bên.

Bước 3: Xác định \(I = \left( P \right) \cap d\), khi đó I là tâm mặt cầu ngoại tiếp khối chóp.

Lời giải chi tiết

 Tâm \(I\) của mặt cầu đi qua \(A,B,C,S\) là giao của trục đường tròn ngoại tiếp tam giác \(ABC\) và mặt phẳng trung trực của \(SA\)

Tam giác \(ABC\) vuông tại \(A\) nên trục đường tròn \(Mx\) với \(M\) là trung điểm của \(BC\).

Bán kính mặt cầu \(R=IA\) 

\(MI={1 \over 2} SA = {a\over 2}\), \(AM={1\over 2} BC={1\over 2} \sqrt{b^2+c^2}\)

Xét tam giác vuông \(IAM\) có: \(R = IA = \sqrt {I{M^2} + A{M^2}}  = \sqrt {\frac{{{a^2}}}{4} + \frac{{{b^2} + {c^2}}}{4}}  = \frac{1}{2}\sqrt {{a^2} + {b^2} + {c^2}} \)

Chọn (C).

Các bài học liên quan
Bài 7 trang 52 SGK Hình học 12
Bài 8 trang 52 SGK Hình học 12
Bài 11 trang 53 SGK Hình học 12
Bài 12 trang 53 SGK Hình học 12
Bài 13 trang 53 SGK Hình học 12
Các chương học và chủ đề lớn

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật