Giải bài 86 trang 130 SGK giải tích 12 nâng cao

Tính:

Bài 86. Tính:

         \(a)\,A = {9^{2{{\log }_3}4 + 4{{\log }_{81}}2}}\)                                                         

         \(b)\,B = {\log _a}\left( {{{{a^2}.\root 3 \of a .\root 5 \of {{a^4}} } \over {\root 4 \of a }}} \right)\)

         \(c)\,\,C = {\log _5}{\log _5}\root 5 \of {\root 5 \of {\root 5 \of {....\root 5 \of 5 } } } \)    

Giải

a) Áp dụng \({\log _{{a^\alpha }}}{b^\beta } = {\beta  \over \alpha }{\log _a}b\) (với \(a > 0, b>0\) và \(a \ne 1\)) và \({a^{{{\log }_a}b}} = b\)

Ta có: 

\(\eqalign{
& 2{\log _3}4 + 4{\log _{81}}2 = {4 \over 2}{\log _3}4 + 2{\log _9}2 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\log _9}{4^4} + {\log _9}{2^2} = {\log _9}{2^{10}} \cr} \)                      

Do đó \(A = {9^{{{\log }_9}{2^{10}}}} = {2^{10}} = 1024\)

b) Ta có \({{{a^2}.\root 3 \of a .\root 5 \of {{a^4}} } \over {\root 4 \of a }} = {a^{2 + {1 \over 3} + {4 \over 5} - {1 \over 4}}} = {a^{{{173} \over {60}}}}\)

Do đó: \(B = {\log _a}{a^{{{173} \over {60}}}} = {{173} \over {60}}\)

c) Ta có \(\root 5 \of {\root 5 \of {\root 5 \of {....\root 5 \of 5 } } }  = {5^{{{\left( {{1 \over 5}} \right)}^n}}} \Rightarrow {\log _5}\root 5 \of {\root 5 \of {\root 5 \of {....\root 5 \of 5 } } }  = {\left( {{1 \over 5}} \right)^n} = {5^{ - n}}\)

\( \Rightarrow C =  - n\)

 

Các bài học liên quan
Bài 90 trang 131 SGK giải tích 12 nâng cao
Bài 92 trang 131 SGK giải tích 12 nâng cao

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật