Giải bài 82 trang 130 SGK giải tích 12 nâng cao
Giải bất phương trình:
- Bài học cùng chủ đề:
- Bài 83 trang 130 SGK giải tích 12 nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 82. Giải bất phương trình:
\(a)\,\log _{0,5}^2x + {\log _{0,5}}x - 2 \le 0\,;\)
\(b)\,{2^x} + {2^{ - x + 1}} - 3 < 0.\)
Giải
a) Điều kiện: \(x > 0\)
Đặt \(t = {\log _{0,5}}x\) ta có:
\(\eqalign{
& {t^2} + t - 2 \le 0 \Leftrightarrow - 2 \le t \le 1 \cr
& \Leftrightarrow - 2 \le {\log _{0,5}}x \le 1 \Leftrightarrow {\left( {0,5} \right)^{ - 2}} \ge x \ge {\left( {0,5} \right)^1} \cr
& \Leftrightarrow {1 \over 2} \le x \le 4 \cr} \)
Vậy \(S = \left[ {{1 \over 2};4} \right]\)
b) Đặt \(t = {2^x}\,\left( {t > 0} \right)\) ta có:
\(\eqalign{
& t + {2 \over t} - 3 < 0 \Leftrightarrow {t^2} - 3t + 2 < 0\,\,\left( {do\,\,t > 0} \right) \cr
& \Leftrightarrow 1 < t < 2 \Leftrightarrow 1 < {2^x} < 2 \Leftrightarrow 0 < x < 1 \cr} \)
Vậy \(S = \left( {0;1} \right)\)
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học