Giải câu 3 trang 160 SGK Đại số 10

Giả sử x1, x2 là hai nghiệm của phương trình đã cho, hãy tính tổng và tích của chúng. Tìm một hệ thức liên hệ giữa x1 và x2 không phụ thuộc vào m.

Bài 3. Cho phương trình:

 \({x^2} - 4mx + 9{(m - 1)^2} = 0\)

a) Xem xét với giá trị nào của \(m\), phương trình trên có nghiệm.

b) Giả sử \(x_1,x_2\) là hai nghiệm của phương trình đã cho, hãy tính tổng và tích của chúng. Tìm một hệ thức liên hệ giữa \(x_1\) và \(x_2\) không phụ thuộc vào \(m\).

c) Xác định \(m\) để hiệu các nghiệm của phương trình bằng \(4\).

Trả lời:

a) \(Δ’ = 4m^2– 9(m-1) = -5m^2+ 18m – 9 ≥ 0\)

 \(\Leftrightarrow {3 \over 5} \le m \le 3\)

Phương trình có nghiệm nếu \(m \in \left[ {{3 \over 5},3} \right]\)

b) Với  \(m \in \left[ {{3 \over 5},3} \right]\) phương trình có các nghiệm \(x_1,x_2\) thỏa mãn

\(x_1+x_2= 4m\) (1)  và   \(x_1.x_2= 9(m-1)^2\)   (2)

Từ (1)và (2) suy ra:

 \({x_1}.{x_2} = 9{({{{x_1} + {x_2}} \over 4} - 1)^2} \Leftrightarrow 9{({x_1} + {x_2} - 4)^2} - 16{x_1}{x_2} = 0\)

Đó là hệ thức giữa hai nghiệm của phương trình độc lập với tham số \(m\).

c) Ta có:

\(x_2– x_1= 4;x_1+ x_2= 4m ⇒ x_2= 2(m+1)\)

Thay biểu thức của \(x_2\) vào phương trình thì được:

\(4(m+1)^2 – 8m(m+1) + 9(m-1)^2= 0\)

\(\eqalign{
& \Leftrightarrow 5{m^2} - 18m + 13 = 0 \cr
& \Leftrightarrow {m_{_1}} = 1;{m_2} = {{13} \over 5} \cr} \)

Kết luận: Nếu \(m = 1\) hoặc \(m = {{13} \over 5}\) thì hiệu của \(2\) nghiệm bằng \(4\).

Các bài học liên quan
Các chương học và chủ đề lớn

Bài học nổi bật nhất

Đề thi lớp 10 mới cập nhật