Giải bài 7 trang 27 sgk hình học lớp 10
Bài 7. Các điểm A'(-4; 1), B'(2;4), C(2, -2) lần lượt là trung điểm của các cạnh BC, CA và AB của tam giác ABC.
- Bài học cùng chủ đề:
- Bài 8 trang 27 sgk hình học lớp 10
- Lý thuyết hệ trục tọa độ
- Ngữ pháp tiếng anh hay nhất
Bài 7. Các điểm \(A'(-4; 1), B'(2;4), C'(2, -2)\) lần lượt là trung điểm của các cạnh \(BC, CA\) và \(AB\) của tam giác \(ABC\). Tính tọa độ đỉnh của tam giác \(ABC\). Chứng minh rằng trọng tâm tam giác \(ABC\) và \(A'B'C'\) trùng nhau.
Giải
Giả sử \(A({x_A};{y_A}),B({x_B};{y_B}),C({x_C};{y_C})\)
\(A'\) là trung điểm của cạnh \(BC\) nên \(-4 = \frac{1}{2} (x_B+ x_C)\)
\(\Rightarrow {x_B} + {x_C} = - 8\) (1)
Tương tự ta có \({x_A} + {x_C} = 4\) (2)
\({x_B} + {x_A} = 4\) (3)
Giải hệ (1), (2) và (3) ta được:
\(\left\{ \matrix{
{x_A} = 8 \hfill \cr
{x_B} = - 4 \hfill \cr
x{}_C = - 4 \hfill \cr} \right.\)
Tương tự ta tính được:
\(\left\{ \matrix{
{y_A} = 1 \hfill \cr
{y_B} = - 5 \hfill \cr
y{}_C = 7 \hfill \cr} \right.\)
Gọi \(G({x_G};y{}_G)\) là trọng tâm của tam giác \(ABC\)
Khi đó ta có:
$$\left\{ \matrix{
{x_G} = {{{x_A} + {x_B} + {x_C}} \over 3} = {{8 - 4 - 4} \over 3} = 0 \hfill \cr
{y_G} = {{{y_A} + {y_B} + y{}_C} \over 3} = {{1 - 5 + 7} \over 3} = {1} \hfill \cr} \right.$$
Vậy \(G(0;1)\) (*)
Gọi \(G'({x_{G'}};y{}_{G'})\) là trong tâm của tam giác \(A'B'C'\)
Khi đó ta có:
$$\left\{ \matrix{
{x_{G'}} = {{{x_{A'}} + {x_{B'}} + {x_{C'}}} \over 3} = {{ - 4 + 2 + 2} \over 3} = 0 \hfill \cr
{y_{G'}} = {{{y_{A'}} + {y_{B'}} + y{}_{C'}} \over 3} = {{1 + 4 - 2} \over 3} = 1 \hfill \cr} \right.$$
Vậy \(G'(0;1)\) (2*)
Từ (*) và (2*) ta thấy \(G \equiv G'\)
Vậy trọng tâm tam giác \(ABC\) và \(A'B'C'\) trùng nhau.